login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370523
Numbers k > 2 such that all positive values of k - 2^(2^m) are prime, with integer m >= 0.
1
4, 7, 9, 15, 21, 33, 45, 63, 75, 105, 153, 183, 195, 243, 273, 285, 435, 525, 573, 603, 813, 825, 1065, 1233, 1305, 1623, 2145, 2595, 2715, 2805, 3375, 3465, 3933, 4023, 4245, 4275, 4653, 4803, 4935, 5655, 6303, 6705, 7563, 8865, 10095, 10503, 10863, 12165, 12243, 12825, 13713, 13725, 14013
OFFSET
1,1
COMMENTS
If k > 4 is a term of this sequence, then (k-2, k-4) is a twin prime pair.
So all terms k > 7 are divisible by 3, and k = 7 is the only prime here.
It seems that there are infinitely many such numbers.
Note that A039669 is finite and probably complete.
EXAMPLE
The number 15 is a term, since 15-2^(2^0) and 15-2^(2^1) are primes 13 and 11.
MATHEMATICA
q[k_] := Module[{m = 0}, While[2^(2^m) < k && PrimeQ[k - 2^(2^m)], m++]; 2^(2^m) >= k]; Select[Range[4, 15000], q] (* Amiram Eldar, Feb 22 2024 *)
CROSSREFS
Sequence in context: A010403 A032709 A243172 * A024797 A271253 A271542
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Feb 22 2024
EXTENSIONS
More terms from Amiram Eldar, Feb 22 2024
STATUS
approved