login
A336599
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are contained within the marked chord.
6
1, 5, 1, 33, 9, 3, 279, 87, 39, 15, 2895, 975, 495, 255, 105, 35685, 12645, 6885, 4005, 2205, 945, 509985, 187425, 106785, 66465, 41265, 23625, 10395, 8294895, 3133935, 1843695, 1198575, 795375, 513135, 301455, 135135, 151335135, 58437855, 35213535, 23601375, 16343775, 11263455, 7453215, 4459455, 2027025
OFFSET
1,2
LINKS
Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
FORMULA
E.g.f.: (sqrt(1 - 2*y*x) - sqrt(1 - 2*x))/(1 - 2*x)/(1 - y).
EXAMPLE
Triangle begins:
1;
5, 1;
33, 9, 3;
279, 87, 39, 15;
2895, 975, 495, 255, 105;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can only be (1,4) and it contains one other chord, namely (2,3), hence T(2,1) = 1.
MATHEMATICA
CoefficientList[Normal[Series[(Sqrt[1-2*y*x]-Sqrt[1-2*x])/(1-2*x)/(1-y), {x, 0, 10}]]/.{x^n_.->x^n*n!}, {x, y}]
CROSSREFS
Row sums are n*A001147(n) for n > 0.
Leading diagonal is A001147(n-1) for n > 0.
The first column is A129890(n-1) for n > 0.
The second column is A035101(n+1) for n > 0.
Sequence in context: A296043 A377058 A336600 * A066833 A334887 A039813
KEYWORD
nonn,tabl
AUTHOR
Donovan Young, Jul 29 2020
STATUS
approved