login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A367333
a(n) = 27^n * Sum_{k=0..n} binomial(-1/3, k)^2.
4
1, 30, 846, 23430, 643635, 17601732, 480016620, 13065872292, 355170348720, 9644965082940, 261716257738980, 7097365769203260, 192376104782028120, 5212313820585819540, 141177183151026767580, 3822747528826291049460, 103486045894075138514445
OFFSET
0,2
COMMENTS
Compare with A358365: Sum_{k>=0} binomial(-1/3, k)^2 converges, but Sum_{k>=0} binomial(-1/2, k)^2 diverges.
In general, for m>2, Sum_{k>=0} binomial(-1/m,k)^2 = Gamma(1 - 2/m) / Gamma(1 - 1/m)^2.
FORMULA
a(n) ~ Gamma(1/3)^3 * 3^(3*n+1) / (4*Pi^2).
MATHEMATICA
Table[27^n*Sum[Binomial[-1/3, k]^2, {k, 0, n}], {n, 0, 16}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 14 2023
STATUS
approved