OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..696
Index entries for linear recurrences with constant coefficients, signature (28, 28, 28, 28, -406).
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
a(n) = 28*a(n-1)+28*a(n-2)+28*a(n-3)+28*a(n-4)-406*a(n-5). - Wesley Ivan Hurt, May 11 2021
MATHEMATICA
CoefficientList[Series[(x^5+2*x^4+2*x^3+2*x^2+2*x+1)/(406*x^5-28*x^4 - 28*x^3-28*x^2-28*x+1), {x, 0, 20}], x] (* Wesley Ivan Hurt, Mar 31 2017 *)
LinearRecurrence[{28, 28, 28, 28, -406}, {1, 30, 870, 25230, 731670, 21217995}, 20] (* Vincenzo Librandi, Apr 01 2017 *)
coxG[{5, 406, -28}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
PROG
(Magma) I:=[1, 30, 870, 25230, 731670, 21217995]; [n le 6 select I[n] else 28*Self(n-1)+28*Self(n-2)+28*Self(n-3)+28*Self(n-4)-406*Self(n-5): n in [1..30]]; // Vincenzo Librandi, Apr 01 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-29*x+434*x^5-406*x^6) )); // G. C. Greubel, May 16 2019
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-29*x+434*x^5-406*x^6)) \\ G. C. Greubel, Jul 28 2017
(Sage) ((1+x)*(1-x^5)/(1-29*x+434*x^5-406*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved