The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163549 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I. 1
 1, 29, 812, 22736, 636608, 17824618, 499077936, 13973864310, 391259299536, 10955011154976, 306733334006862, 8588337963333660, 240467992209756738, 6732950603977585764, 188518328027869860720, 5278393098774299901978 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170748, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..685 Index entries for linear recurrences with constant coefficients, signature (27, 27, 27, 27, -378). FORMULA G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1). MATHEMATICA CoefficientList[Series[(1+x)*(1-x^5)/(1-28*x+405*x^5-378*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *) coxG[{5, 378, -27}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *) PROG (PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-28*x+405*x^5-378*x^6)) \\ G. C. Greubel, Jul 27 2017 (MAGMA) R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-28*x+405*x^5-378*x^6) )); // G. C. Greubel, May 16 2019 (Sage) ((1+x)*(1-x^5)/(1-28*x+405*x^5-378*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019 CROSSREFS Sequence in context: A159669 A162831 A163207 * A164026 A164665 A164974 Adjacent sequences:  A163546 A163547 A163548 * A163550 A163551 A163552 KEYWORD nonn,easy AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 12:57 EDT 2021. Contains 343666 sequences. (Running on oeis4.)