login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126775
a(n) = phi(n)^2 * d(n) = A000010(n)^2 * A000005(n).
2
1, 2, 8, 12, 32, 16, 72, 64, 108, 64, 200, 96, 288, 144, 256, 320, 512, 216, 648, 384, 576, 400, 968, 512, 1200, 576, 1296, 864, 1568, 512, 1800, 1536, 1600, 1024, 2304, 1296, 2592, 1296, 2304, 2048, 3200, 1152, 3528, 2400, 3456, 1936, 4232, 2560, 5292, 2400
OFFSET
1,2
FORMULA
Multiplicative with a(p^e) = (e+1)*(p-1)^2*p^(2*e-2). - Amiram Eldar, Dec 29 2022
From Vaclav Kotesovec, May 31 2024: (Start)
Dirichlet g.f.: zeta(s-2)^2 * Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Sum_{k=1..n} a(k) ~ f(3) * n^3 * (log(n) + 2*gamma - 1/3 + f'(3)/f(3)) / 3, where
f(3) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264...,
f'(3) = f(3) * Sum_{p prime} 2*(2*p - 1) * log(p) / (p^3 + p^2 - 3*p + 1) = f(3) * 1.6860441157206199528397247528679297282000614932962665074593283751342385...
and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
Table[EulerPhi[n]^2 DivisorSigma[0, n], {n, 50}] (* Harvey P. Dale, Dec 05 2012 *)
PROG
(Magma) [ EulerPhi(n)*EulerPhi(n)*NumberOfDivisors(n) : n in [1..100] ];
CROSSREFS
KEYWORD
easy,nonn,mult
AUTHOR
Jonathan Vos Post, May 27 2007
STATUS
approved