login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219549
Smallest prime factor of 2^(8n) + 1.
1
257, 65537, 97, 641, 257, 193, 257, 274177, 97, 65537, 257, 641, 257, 449, 97, 59649589127497217, 257, 193, 257, 641, 97, 65537, 257, 769, 257, 65537, 97, 641, 257, 193, 257, 1238926361552897, 97, 5441, 257, 641, 257, 65537, 97, 274177, 257, 193, 257, 641, 97, 65537, 257, 59649589127497217, 257, 65537, 97, 641, 257, 193, 257, 274177, 97, 65537, 257, 641, 257, 5953
OFFSET
1,1
COMMENTS
The smallest prime factor of 2^(8n+k) + 1 does not depend on n if 0 < k < 8 (see Formula in A002586).
For references and links, see A002586.
LINKS
FORMULA
a(n) = A002586(8n) = A020639(2^(8n) + 1).
a(2^(k-3)) = A020639(A000215(k)) is the smallest prime factor of the k-th Fermat number 2^(2^k) + 1.
EXAMPLE
a(1) = 2^8 + 1 = 257 is the Fermat prime A019434(3).
a(2) = 2^16 + 1 = 65537 is the Fermat prime A019434(4).
MATHEMATICA
Table[FactorInteger[2^(8*n) + 1][[1, 1]], {n, 20}] (* T. D. Noe, Nov 29 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Nov 28 2012
STATUS
approved