OFFSET
1,1
COMMENTS
A prime p = k*2^j + 1 (with k odd) belongs to this sequence if and only if p is a factor of a Fermat number 2^(2^m) + 1 for some m <= j - 3.
REFERENCES
Allan Cunningham, Haupt-exponents of 2, The Quarterly Journal of Pure and Applied Mathematics, Vol. 37 (1906), pp. 122-145.
LINKS
EXAMPLE
a(1) = 1^2 + 64*2^2 = 257 is a prime factor of 2^(2^3) + 1;
a(2) = 1^2 + 64*32^2 = 65537 is a prime factor of 2^(2^4) + 1;
a(3) = 127^2 + 64*194^2 = 2424833 is a prime factor of 2^(2^9) + 1;
a(4) = 2047^2 + 64*584^2 = 26017793 is a prime factor of 2^(2^12) + 1;
a(5) = 7295^2 + 64*406^2 = 63766529 is a prime factor of 2^(2^12) + 1;
PROG
(PARI) isok(p) = if(p%8==1 && isprime(p), my(d=Mod(2, p)); d^((p-1)/4)==1 && d^2^valuation(p-1, 2)==1, return(0));
CROSSREFS
KEYWORD
nonn
AUTHOR
Arkadiusz Wesolowski, Apr 10 2022
STATUS
approved