login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283510
Expansion of exp( Sum_{n>=1} A283369(n)/n*x^n ) in powers of x.
3
1, 1, 257, 531698, 4295531890, 95371863221411, 4738477950914329100, 459991301719292572342573, 79228623778497392212453912974, 22528478894247280128054776211273960, 10000022549030658394108744658459680045250
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k^(4*k)).
a(n) = (1/n)*Sum_{k=1..n} A283369(k)*a(n-k) for n > 0.
a(n) ~ n^(4*n) * (1 + exp(-4)/n^4). - Vaclav Kotesovec, Mar 17 2017
MATHEMATICA
CoefficientList[Series[Product[1/(1 - x^k)^(k^(4k)), {k, 1, 10}], {x, 0, 10}], x] (* Indranil Ghosh, Mar 17 2017 *)
PROG
(PARI) A(n) = sumdiv(n, d, d^(4*d + 1));
a(n) = if(n<1, 1, (1/n) * sum(k=1, n, A(k) * a(n - k)));
for(n=0, 10, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 17 2017
CROSSREFS
Cf. Product_{k>=1} 1/(1 - x^k)^(k^(m*k)): A000041 (m=0), A023880 (m=1), A283579 (m=2), A283580 (m=3), this sequence (m=4).
Cf. A283803 (Product_{k>=1} (1 - x^k)^(k^(4*k))).
Sequence in context: A351865 A218723 A097736 * A103349 A291506 A275098
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 17 2017
STATUS
approved