login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097736 Pell equation solutions (8*b(n))^2 - 65*a(n)^2 = -1 with b(n):=A097735(n), n>=0. 5
1, 257, 66305, 17106433, 4413393409, 1138638393089, 293764292023553, 75790048703683585, 19553538801258341377, 5044737220675948391681, 1301522649395593426712321, 335787798806842428143387137 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..413

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (258, -1).

FORMULA

a(n)= S(n, 2*129) - S(n-1, 2*129) = T(2*n+1, sqrt(65))/sqrt(65), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.

a(n)= ((-1)^n)*S(2*n, 16*I) with the imaginary unit I and Chebyshev polynomials S(n, x) with coefficients shown in A049310.

G.f.: (1-x)/(1-258*x+x^2).

a(n) = 258*a(n-1)- a(n-2), n>1 ; a(0)=1, a(1)=257 . [From Philippe Deléham, Nov 18 2008]

EXAMPLE

(x,y) = (8,1), (2072,257), (534568,66305), ... give the positive integer solutions to x^2 - 65*y^2 =-1.

MATHEMATICA

LinearRecurrence[{258, -1}, {1, 257}, 12] (* Ray Chandler, Aug 12 2015 *)

CROSSREFS

Cf. A097734 for S(n, 258).

Row 8 of array A188647.

Sequence in context: A219549 A219548 A218723 * A283510 A103349 A275098

Adjacent sequences:  A097733 A097734 A097735 * A097737 A097738 A097739

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 24 05:48 EDT 2017. Contains 291052 sequences.