The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283580 Expansion of exp( Sum_{n>=1} A283535(n)/n*x^n ) in powers of x. 5
 1, 1, 65, 19748, 16799044, 30535636881, 101591759812967, 558649739234980142, 4722932373908389412037, 58154498193439779564557624, 1000058469893323150011227885608, 23226158305362748824532880463596385, 708825166389400019044145225134521489486 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..152 FORMULA G.f.: Product_{k>=1} 1/(1 - x^k)^(k^(3*k)). a(n) = (1/n)*Sum_{k=1..n} A283535(k)*a(n-k) for n > 0. a(n) ~ n^(3*n) * (1 + exp(-3)/n^3). - Vaclav Kotesovec, Mar 17 2017 MATHEMATICA A[n_] :=  Sum[d^(3*d + 1), {d, Divisors[n]}]; a[n_] := If[n==0, 1, (1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 12}] (* Indranil Ghosh, Mar 11 2017 *) PROG (PARI) A(n) = sumdiv(n, d, d^(3*d + 1)); a(n) = if(n==0, 1, (1/n)*sum(k=1, n, A(k)*a(n - k))); for(n=0, 12, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017 CROSSREFS Cf. Product_{k>=1} 1/(1 - x^k)^(k^(m*k)): A000041 (m=0), A023880 (m=1), A283579 (m=2), this sequence (m=3). Cf. A283536 (Product_{k>=1} (1 - x^k)^(k^(3*k))). Sequence in context: A323316 A120801 A308697 * A355496 A308491 A349901 Adjacent sequences:  A283577 A283578 A283579 * A283581 A283582 A283583 KEYWORD nonn AUTHOR Seiichi Manyama, Mar 11 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 15:14 EDT 2022. Contains 356189 sequences. (Running on oeis4.)