login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283580
Expansion of exp( Sum_{n>=1} A283535(n)/n*x^n ) in powers of x.
5
1, 1, 65, 19748, 16799044, 30535636881, 101591759812967, 558649739234980142, 4722932373908389412037, 58154498193439779564557624, 1000058469893323150011227885608, 23226158305362748824532880463596385, 708825166389400019044145225134521489486
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k^(3*k)).
a(n) = (1/n)*Sum_{k=1..n} A283535(k)*a(n-k) for n > 0.
a(n) ~ n^(3*n) * (1 + exp(-3)/n^3). - Vaclav Kotesovec, Mar 17 2017
MATHEMATICA
A[n_] := Sum[d^(3*d + 1), {d, Divisors[n]}]; a[n_] := If[n==0, 1, (1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 12}] (* Indranil Ghosh, Mar 11 2017 *)
PROG
(PARI) A(n) = sumdiv(n, d, d^(3*d + 1));
a(n) = if(n==0, 1, (1/n)*sum(k=1, n, A(k)*a(n - k)));
for(n=0, 12, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017
CROSSREFS
Cf. Product_{k>=1} 1/(1 - x^k)^(k^(m*k)): A000041 (m=0), A023880 (m=1), A283579 (m=2), this sequence (m=3).
Cf. A283536 (Product_{k>=1} (1 - x^k)^(k^(3*k))).
Sequence in context: A120801 A308697 A368890 * A355496 A308491 A349901
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 11 2017
STATUS
approved