The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283536 Expansion of exp( Sum_{n>=1} -A283535(n)/n*x^n ) in powers of x. 5
 1, -1, -64, -19619, -16755517, -30499543213, -101528172949440, -558442022082754554, -4721800698082895269442, -58144976385942395405449505, -999941534906642496357956893139, -23224150593200781968944997552887957, -708778584588517237886357058373629079824 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..152 FORMULA G.f.: Product_{k>=1} (1 - x^k)^(k^(3*k)). a(n) = -(1/n)*Sum_{k=1..n} A283535(k)*a(n-k) for n > 0. MATHEMATICA A[n_] := Sum[d^(3*d + 1), {d, Divisors[n]}]; a[n_]:=If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 12}] (* Indranil Ghosh, Mar 11 2017 *) PROG (PARI) A(n) = sumdiv(n, d, d^(3*d + 1)); a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, A(k)*a(n - k))); for(n=0, 12, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017 CROSSREFS Cf. Product_{k>=1} (1 - x^k)^(k^(m*k)): A010815 (m=0), A283499 (m=1), A283534 (m=2), this sequence (m=3). Cf. A283580 (Product_{k>=1} 1/(1 - x^k)^(k^(3*k))). Sequence in context: A330482 A187407 A271241 * A089208 A083282 A082502 Adjacent sequences: A283533 A283534 A283535 * A283537 A283538 A283539 KEYWORD sign AUTHOR Seiichi Manyama, Mar 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 14:43 EDT 2024. Contains 372952 sequences. (Running on oeis4.)