The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283536 Expansion of exp( Sum_{n>=1} -A283535(n)/n*x^n ) in powers of x. 5

%I #14 Mar 13 2017 07:03:57

%S 1,-1,-64,-19619,-16755517,-30499543213,-101528172949440,

%T -558442022082754554,-4721800698082895269442,

%U -58144976385942395405449505,-999941534906642496357956893139,-23224150593200781968944997552887957,-708778584588517237886357058373629079824

%N Expansion of exp( Sum_{n>=1} -A283535(n)/n*x^n ) in powers of x.

%H Seiichi Manyama, <a href="/A283536/b283536.txt">Table of n, a(n) for n = 0..152</a>

%F G.f.: Product_{k>=1} (1 - x^k)^(k^(3*k)).

%F a(n) = -(1/n)*Sum_{k=1..n} A283535(k)*a(n-k) for n > 0.

%t A[n_] := Sum[d^(3*d + 1), {d, Divisors[n]}]; a[n_]:=If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 12}] (* _Indranil Ghosh_, Mar 11 2017 *)

%o (PARI) A(n) = sumdiv(n, d, d^(3*d + 1));

%o a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, A(k)*a(n - k)));

%o for(n=0, 12, print1(a(n), ", ")) \\ _Indranil Ghosh_, Mar 11 2017

%Y Cf. Product_{k>=1} (1 - x^k)^(k^(m*k)): A010815 (m=0), A283499 (m=1), A283534 (m=2), this sequence (m=3).

%Y Cf. A283580 (Product_{k>=1} 1/(1 - x^k)^(k^(3*k))).

%K sign

%O 0,3

%A _Seiichi Manyama_, Mar 10 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 10:19 EDT 2024. Contains 373407 sequences. (Running on oeis4.)