The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283534 Expansion of exp( Sum_{n>=1} -A283533(n)/n*x^n ) in powers of x. 5
1, -1, -16, -713, -64687, -9688545, -2165715003, -675843665621, -280752874575386, -149800127959983890, -99844730502381895830, -81300082280849836639246, -79413710313923588156379547, -91652445699847071535357000689, -123383623610527054787988720527285, -191626051373071219208574650313032502 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^(k^(2*k)).
a(n) = -(1/n)*Sum_{k=1..n} A283533(k)*a(n-k) for n > 0.
MATHEMATICA
A[n_] := Sum[d^(2*d + 1), {d, Divisors[n]}]; a[n_] := If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 13}] (* Indranil Ghosh, Mar 11 2017 *)
PROG
(PARI)
a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, sumdiv(k, d, d^(2*d + 1))*a(n - k)));
for(n=0, 15, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017
CROSSREFS
Cf. Product_{k>=1} (1 - x^k)^(k^(m*k)): A010815 (m=0), A283499 (m=1), this sequence (m=2), A283536 (m=3).
Cf. A283579 (Product_{k>=1} 1/(1 - x^k)^(k^(2*k))).
Sequence in context: A036513 A123824 A198283 * A294704 A264114 A356482
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 10 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 19:43 EDT 2024. Contains 373410 sequences. (Running on oeis4.)