login
A283803
Expansion of exp( Sum_{n>=1} -A283369(n)/n*x^n ) in powers of x.
3
1, -1, -256, -531185, -4294403215, -95363000657073, -4738284730302658391, -459981771468075494207385, -79227701254823507875355278590, -22528320196093613328344381426130010, -9999977451048811940735941180766259658078
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^(k^(4*k)).
a(n) = -(1/n)*Sum_{k=1..n} A283369(k)*a(n-k) for n > 0.
MATHEMATICA
CoefficientList[Series[Product[(1 - x^k)^(k^(4k)), {k, 1, 10}], {x, 0, 10}], x] (* Indranil Ghosh, Mar 17 2017 *)
PROG
(PARI) A(n) = sumdiv(n, d, d^(4*d + 1));
a(n) = if(n<1, 1, -(1/n) * sum(k=1, n, A(k) * a(n - k)));
for(n=0, 10, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 17 2017
CROSSREFS
Cf. Product_{k>=1} (1 - x^k)^(k^(m*k)): A010815 (m=0), A283499 (m=1), A283534 (m=2), A283536 (m=3), this sequence (m=4).
Cf. A283510 (Product_{k>=1} 1/(1 - x^k)^(k^(4*k))).
Sequence in context: A369824 A016796 A018877 * A330483 A278142 A013759
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 17 2017
STATUS
approved