login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283805
k-digit composite numbers Sum_{j=0..k-1} d_(j)*10^j with exactly k prime factors, p_(0), p_(1), ..., p_(k-2), p_(k-1), written in ascending order, such that Sum_{j=0..k-1} d_(j)^p_(j) is a prime number.
1
14, 102, 110, 164, 212, 290, 434, 595, 1060, 1068, 1110, 1112, 1190, 1220, 1284, 1356, 1448, 1460, 1572, 1668, 1804, 1884, 1938, 2090, 2108, 2892, 3185, 3770, 3972, 5358, 9790, 10010, 10020, 10040, 10100, 10136, 10220, 10448, 10536, 10664, 10668, 10868, 10998, 11052
OFFSET
1,1
LINKS
Carlos Rivera, Puzzle 25. Composed primes (by G.L. Honaker, Jr.), The Prime Puzzles and Problems Connection.
EXAMPLE
14 = 2 * 7 and 4^2 + 1^7 = 17 is prime;
102 = 2 * 3 * 17 = 2^2 + 0^3 + 1^17 = 5 is prime;
110 = 2 * 5 * 11 and 0^2 + 1^5 + 1^11 = 2 is prime.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, d, j, k; global n; a:=0; k:=0;
for n from 12 to q do a:=ifactors(n)[2]; if ilog10(n)+1=bigomega(n) then d:=[];
for k from 1 to nops(a) do for j from 1 to a[k][2] do d:=[op(d), a[k][1]]; od; od; d:=sort(d);
b:=n; c:=0; for k from 1 to ilog10(n)+1 do c:=c+(b mod 10)^d[k]; b:=trunc(b/10); od;
if isprime(c) then print(n); fi; fi; od; end: P(10^5);
MATHEMATICA
ok[n_] := Block[{f = FactorInteger@n, d = IntegerDigits@n}, Total[Last /@ f] == Length@d && PrimeQ@ Total[ Reverse[d]^ Flatten[#[[1]] + 0 Range@#[[2]] & /@ f]]]; Select[ Range[10^4], ok] (* Giovanni Resta, Mar 17 2017 *)
CROSSREFS
Cf. A283804.
Sequence in context: A041370 A244883 A055913 * A005757 A295210 A255721
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Mar 17 2017
STATUS
approved