login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of 3 nonzero 8th powers.
32

%I #25 May 02 2023 11:11:46

%S 3,258,513,768,6563,6818,7073,13123,13378,19683,65538,65793,66048,

%T 72098,72353,78658,131073,131328,137633,196608,390627,390882,391137,

%U 397187,397442,403747,456162,456417,462722,521697,781251,781506,787811,846786

%N Numbers that are the sum of 3 nonzero 8th powers.

%H R. J. Mathar, <a href="/A003381/b003381.txt">Table of n, a(n) for n = 1..8000</a> (replacing an earlier b-file that missed terms).

%p A003381 := proc(nmax::integer)

%p local xyzmax, ins, x,x8,y,y8,z,z8 ;

%p xyzmax := ceil(root[8](nmax/3)) ;

%p a := {} ;

%p for x from 1 to xyzmax do

%p x8 := x^8 ;

%p if 3*x8 > nmax then

%p break;

%p end if;

%p for y from x do

%p y8 := y^8 ;

%p if x8+2*y8 > nmax then

%p break;

%p end if;

%p for z from y do

%p z8 := z^8 ;

%p if x8+y8+z8 > nmax then

%p break;

%p end if;

%p if x8+y8+z8 <= nmax then

%p a := a union {x8+y8+z8} ;

%p end if;

%p end do:

%p end do:

%p end do:

%p sort(convert(a,list)) ;

%p end proc:

%p nmax := 6755626171875 ;

%p L:= A003381(nmax) ;

%p LISTTOBFILE(L,"b003381.txt",1) ; # _R. J. Mathar_, Aug 01 2020

%t kmax = 4*10^12;

%t m = kmax^(1/8) // Ceiling;

%t Table[k = x^8 + y^8 + z^8; If[k <= kmax, k, Nothing], {x, 1, m}, {y, x, m}, {z, y, m}] // Flatten // Union (* _Jean-François Alcover_, May 02 2023 *)

%Y Cf. A001016 (8th powers).

%K nonn

%O 1,1

%A _N. J. A. Sloane_