login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003346
Numbers that are the sum of 12 positive 4th powers.
45
12, 27, 42, 57, 72, 87, 92, 102, 107, 117, 122, 132, 137, 147, 152, 162, 167, 172, 177, 182, 187, 192, 197, 202, 212, 217, 227, 232, 242, 247, 252, 257, 262, 267, 277, 282, 292, 297, 307, 312, 322, 327, 332, 342, 347, 357, 362, 372, 377, 387, 392, 402, 407, 412, 417
OFFSET
1,1
COMMENTS
a(88) = 636 = 5^4 + 11 and a(91) = 651 = 5^4 + 2^4 + 10 are the first two terms not congruent to 2 or 7 (mod 10). - M. F. Hasler, Aug 03 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Biquadratic Number.
EXAMPLE
From David A. Corneth, Aug 03 2020: (Start)
3740 is in the sequence as 3740 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 5^4 + 5^4 + 7^4.
4690 is in the sequence as 4690 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 6^4 + 6^4.
7193 is in the sequence as 7193 = 2^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4. (End)
PROG
(PARI) (A003346_upto(N, k=12, m=4)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(500) \\ 2nd & 3rd optional arg allow to get other sequences of this group. See A003333 for alternate code. - M. F. Hasler, Aug 03 2020
(Python)
from itertools import count, takewhile, combinations_with_replacement as mc
def aupto(limit):
qd = takewhile(lambda x: x <= limit, (k**4 for k in count(1)))
ss = set(sum(c) for c in mc(qd, 12))
return sorted(s for s in ss if s <= limit)
print(aupto(417)) # Michael S. Branicky, Dec 27 2021
CROSSREFS
Cf. A000583 (4th powers).
Other numbers that are the sum of k positive m-th powers:
A000404 (k=2, m=2), A000408 (3, 2), A000414 (4, 2), A047700 (k=5, m=2),
A003325 (k=2, m=3), A003072 (k=3, m=3), A003327 .. A003335 (k=4..12, m=3),
A003336 .. A003346 (k=2..12, m=4), A003347 .. A003357 (k=2..12, m=5),
A003358 .. A003368 (k=2..12, m=6), A003369 .. A003379 (k=2..12, m=7),
A003380 .. A003390 (k=2..12, m=8), A003391 .. A004801 (k=2..12, m=9),
A004802 .. A004812 (k=2..12, m=10), A004813 .. A004823 (k=2..12, m=11).
Sequence in context: A274897 A030736 A227854 * A047723 A151542 A069550
KEYWORD
nonn,easy
STATUS
approved