login
A003327
Numbers that are the sum of 4 positive cubes in 1 or more way.
57
4, 11, 18, 25, 30, 32, 37, 44, 51, 56, 63, 67, 70, 74, 81, 82, 88, 89, 93, 100, 107, 108, 119, 126, 128, 130, 135, 137, 142, 144, 145, 149, 154, 156, 161, 163, 168, 180, 182, 187, 191, 193, 198, 200, 205, 206, 217, 219, 224, 226, 233, 240, 243, 245, 252, 254
OFFSET
1,1
COMMENTS
It is conjectured that every number greater than 7373170279850 is in this sequence. [See the paper of the same name. - T. D. Noe, May 25 2017] - Charles R Greathouse IV, Jan 14 2017
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Jean-Marc Deshouillers, François Hennecart, Bernard Landreau, 7373170279850, Math. Comp. 69 (2000), pp. 421-439. Appendix by I. Gusti Putu Purnaba.
Eric Weisstein's World of Mathematics, Cubic Number.
EXAMPLE
From David A. Corneth, Aug 01 2020: (Start)
3888 is in the sequence as 3888 = 6^3 + 6^3 + 12^3 + 12^3.
7729 is in the sequence as 7729 = 2^3 + 4^3 + 14^3 + 17^3.
7875 is in the sequence as 7875 = 5^3 + 10^3 + 15^3 + 15^3. (End)
PROG
(PARI) list(lim)=my(v=List(), e=1+lim\1, x='x, t); t=sum(i=1, sqrtnint(e-4, 3), x^i^3, O(x^e))^4; for(n=4, lim, if(polcoeff(t, n)>0, listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2017
CROSSREFS
Cf. A025403, A057905 (complement), A025411 (distinct).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Sequence in context: A361131 A043409 A030610 * A025403 A047703 A339215
KEYWORD
nonn,easy
EXTENSIONS
More terms from Eric W. Weisstein
STATUS
approved