login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025411
Numbers that are the sum of 4 distinct positive cubes.
3
100, 161, 198, 217, 224, 252, 289, 308, 315, 350, 369, 376, 379, 406, 413, 416, 432, 435, 442, 477, 496, 503, 533, 540, 548, 559, 568, 585, 587, 594, 604, 611, 624, 631, 646, 650, 665, 672, 685, 692, 702, 709, 711, 728, 737, 748, 756, 763, 765, 793, 800, 802, 819, 821, 828, 854, 861, 863, 864, 880, 882, 883, 889, 890, 917, 919, 920, 926, 927, 945, 946, 954, 973, 980, 981, 988, 1007, 1010, 1017, 1036
OFFSET
1,1
COMMENTS
First differs from A025408 at a(80)=1036. - Ray Chandler, Feb 19 2005
EXAMPLE
a(80) = 1036 = 1+8+27+1000 = 27+64+216+729.
MAPLE
isA025411:= proc(n)
local a, x, y, z, wcu ;
for x from 1 do
if 4*x^3 > n then
return false;
end if;
for y from x+1 do
if x^3+3*y^3 > n then
break;
end if;
for z from y+1 do
if x^3+y^3+2*z^3 > n then
break;
end if;
wcu := n-x^3-y^3-z^3 ;
if wcu > z^3 and isA000578(wcu) then
return true ;
end if;
end do
end do:
end do:
end proc:
for n from 1 to 1100 do
if isA025411(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jun 15 2018
MATHEMATICA
smax = 1036;
imax = smax^(1/3) // Ceiling;
Table[If[Less[i, j, k, l] && (s = i^3 + j^3 + k^3 + l^3) <= smax, s, Nothing], {i, 1, imax}, {j, i+1, imax}, {k, j+1, imax}, {l, k+1, imax}] // Flatten // Union (* Jean-François Alcover, Jun 26 2023 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Ray Chandler, Feb 19 2005
STATUS
approved