login
A003332
Numbers that are the sum of 9 positive cubes.
36
9, 16, 23, 30, 35, 37, 42, 44, 49, 51, 56, 58, 61, 63, 65, 68, 70, 72, 75, 77, 79, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 107, 108, 110, 112, 113, 114, 115, 119, 120, 121, 122, 124, 126, 127, 128, 129, 131, 133, 134, 135, 138, 139, 140, 141, 142, 145, 146, 147
OFFSET
1,1
COMMENTS
422 and 471 are the two largest of only 114 positive integers not in this sequence. This can be proved by induction. - M. F. Hasler, Aug 13 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) = 114 + n for all n > 357. - M. F. Hasler, Aug 13 2020
EXAMPLE
From David A. Corneth, Aug 01 2020: (Start)
1352 is in the sequence as 1352 = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 8^3.
2312 is in the sequence as 2312 = 5^3 + 5^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 8^3.
3383 is in the sequence as 3383 = 4^3 + 5^3 + 5^3 + 5^3 + 6^3 + 6^3 + 8^3 + 10^3 + 10^3. (End)
MATHEMATICA
With[{upto=150}, Select[Union[Total/@Tuples[Range[Floor[Surd[upto-8, 3]]]^3, 9]], #<=upto&]](* Harvey P. Dale, Jan 04 2015 *)
PROG
(PARI) (A003332_upto(N, k=9, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(160) \\ See also A003333 for alternate code. - M. F. Hasler, Aug 02 2020
A003332(n)=if(n>357, n+114, A003332_upto(471)[n]) \\ M. F. Hasler, Aug 13 2020
CROSSREFS
Cf. numbers that are the sum of x nonzero y-th powers:
A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).
Sequence in context: A134256 A199859 A046463 * A345793 A091571 A225231
KEYWORD
nonn,easy
STATUS
approved