login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003329
Numbers that are the sum of 6 positive cubes.
45
6, 13, 20, 27, 32, 34, 39, 41, 46, 48, 53, 58, 60, 65, 67, 69, 72, 76, 79, 83, 84, 86, 90, 91, 95, 97, 98, 102, 104, 105, 109, 110, 116, 117, 121, 123, 124, 128, 130, 132, 135, 136, 137, 139, 142, 143, 144, 146, 147, 151, 153, 154, 156, 158, 160, 161, 162, 163, 165, 170
OFFSET
1,1
COMMENTS
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
LINKS
Eric Weisstein's World of Mathematics, Cubic Number.
EXAMPLE
From David A. Corneth, Aug 01 2020: (Start)
1647 is in the sequence as 1647 = 3^3 + 3^3 + 5^3 + 5^3 + 7^3 + 10^3.
3319 is in the sequence as 3319 = 5^3 + 5^3 + 5^3 + 6^3 + 10^3 + 12^3.
4038 is in the sequence as 4038 = 3^3 + 3^3 + 6^3 + 8^3 + 8^3 + 14^3. (End)
MATHEMATICA
max = 200; cmax = Ceiling[(max - 5)^(1/3)]; cc = Array[c, 6]; iter = Sequence @@ Transpose[ {cc, Join[{1}, Most[cc]], Table[cmax, {6}]}]; Union[ Reap[ Do[ a = Total[cc^3]; If[a <= max, Sow[a]], Evaluate[iter]]][[2, 1]]] (* Jean-François Alcover, Oct 23 2012 *)
PROG
(PARI) (A003329_upto(N, k=6, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(200) \\ M. F. Hasler, Aug 02 2020
(Python)
from collections import Counter
from itertools import combinations_with_replacement as multi_combs
def aupto(lim):
c = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
s = filter(lambda x: x<=lim, (sum(mc) for mc in multi_combs(c, 6)))
counts = Counter(s)
return sorted(k for k in counts)
print(aupto(170)) # Michael S. Branicky, Jun 13 2021
CROSSREFS
Cf. A057907 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).
Sequence in context: A309434 A109235 A189523 * A048929 A187393 A356059
KEYWORD
nonn,easy
EXTENSIONS
More terms from Eric W. Weisstein
STATUS
approved