OFFSET
1,1
COMMENTS
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Cubic Number.
EXAMPLE
From David A. Corneth, Aug 01 2020: (Start)
1647 is in the sequence as 1647 = 3^3 + 3^3 + 5^3 + 5^3 + 7^3 + 10^3.
3319 is in the sequence as 3319 = 5^3 + 5^3 + 5^3 + 6^3 + 10^3 + 12^3.
4038 is in the sequence as 4038 = 3^3 + 3^3 + 6^3 + 8^3 + 8^3 + 14^3. (End)
MATHEMATICA
max = 200; cmax = Ceiling[(max - 5)^(1/3)]; cc = Array[c, 6]; iter = Sequence @@ Transpose[ {cc, Join[{1}, Most[cc]], Table[cmax, {6}]}]; Union[ Reap[ Do[ a = Total[cc^3]; If[a <= max, Sow[a]], Evaluate[iter]]][[2, 1]]] (* Jean-François Alcover, Oct 23 2012 *)
PROG
(PARI) (A003329_upto(N, k=6, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(200) \\ M. F. Hasler, Aug 02 2020
(Python)
from collections import Counter
from itertools import combinations_with_replacement as multi_combs
def aupto(lim):
c = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
s = filter(lambda x: x<=lim, (sum(mc) for mc in multi_combs(c, 6)))
counts = Counter(s)
return sorted(k for k in counts)
print(aupto(170)) # Michael S. Branicky, Jun 13 2021
CROSSREFS
Cf. A057907 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Eric W. Weisstein
STATUS
approved