The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A356059 a(n) = A001952(A137804(n)). 8
 6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, 85, 92, 99, 105, 112, 119, 126, 133, 139, 146, 157, 163, 170, 177, 184, 191, 198, 204, 211, 218, 228, 235, 242, 249, 256, 262, 269, 276, 283, 290, 297, 307, 314, 320, 327, 334, 341, 348, 355, 361, 368, 375, 385, 392 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is the fourth of four sequences that partition the positive integers. See A356056. LINKS Table of n, a(n) for n=1..55. FORMULA a(n) = A001952(A137804(n)). EXAMPLE (1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, ...) = A356056 (2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, ...) = A356057 (3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058 (4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059 MATHEMATICA u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *) u1 = Complement[Range[Max[u]], u] (* A001952 *) v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *) v1 = Complement[Range[Max[v]], v] (* A137804 *) Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *) Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *) Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *) Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *) CROSSREFS Cf. A001951, A001952, A136803, A137804, A356052 (intersections instead of results of composition), A356056, A356057, A356058. Sequence in context: A003329 A048929 A187393 * A337141 A043417 A031485 Adjacent sequences: A356056 A356057 A356058 * A356060 A356061 A356062 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 26 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 18:05 EDT 2024. Contains 371798 sequences. (Running on oeis4.)