login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356060
a(n) is the least prime p such that 2*prime(n)^2 + p is the square of a prime.
2
17, 7, 71, 23, 47, 23, 263, 239, 311, 167, 887, 71, 359, 23, 71, 4583, 2447, 479, 431, 1367, 1223, 4679, 2351, 1319, 503, 2399, 983, 3671, 887, 1031, 503, 2927, 2063, 167, 7127, 4127, 431, 1151, 10271, 9311, 5087, 7919, 479, 4463, 8231, 887, 11447, 1031, 17351, 4679, 983, 7559, 5639, 2879, 2591
OFFSET
1,1
LINKS
FORMULA
2*A001248(n) + a(n) = A356048(n)^2.
EXAMPLE
a(3) = 71 because the third prime is 5, 2*5^2 + 71 = 121 = 11^2 where 11 is prime, and 71 is the least prime that works.
MAPLE
f:= proc(n) local q;
q:= floor(sqrt(2)*n);
do
q:= nextprime(q);
if isprime(q^2-2*n^2) then return q^2-2*n^2 fi;
od
end proc:
map(f, [seq(ithprime(i), i=1..100)]);
PROG
(PARI) a(n) = my(p=2, q=prime(n), s); while (! (issquare(s=2*q^2+p) && isprime(sqrtint(s))), p = nextprime(p+1)); p; \\ Michel Marcus, Aug 04 2022
CROSSREFS
Sequence in context: A114032 A107807 A075710 * A048368 A040275 A355237
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jul 24 2022
STATUS
approved