login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114032
Group the triangular numbers so that the n-th group sum is a multiple of n. 1, (3, 6, 10, 15), (21), (28), (36, 45, 55, 66, 78), (91, 105, 120, 136, 153, 171, 190), ... Sequence contains n-th group sum divided by n.
3
1, 17, 7, 7, 56, 161, 30, 95, 1020, 271, 90, 802, 1452, 790, 161, 7481, 309, 5882, 8400, 980, 10260, 6850, 11152, 6081, 15903, 3589, 18221, 2023, 32166, 32805, 9926, 110565, 18518, 4114, 29188, 4225, 83902, 47859, 70552, 89332, 37916, 93302, 34920
OFFSET
1,2
FORMULA
A114031(n)/n.
MAPLE
A000217 := proc(n) option remember ; n*(n+1)/2 ; end: A114031 := proc(n) local strt, su, len, i; strt := 1 ; for su from 1 to n do len := 1; while add( A000217(strt+i), i=0..len-1) mod su <> 0 do len := len+1 ; od ; if su = n then RETURN( add( A000217(strt+i), i=0..len-1) ) ; else strt := strt+len ; fi ; od ; end: A114032 := proc(n) A114031(n)/n ; end: for n from 1 to 80 do printf("%d, ", A114032(n)) ; od ; # R. J. Mathar, May 10 2007
MATHEMATICA
t[n_] := n(n+1)/2;
a[n_] := Module[{strt, su, len}, strt = 1; For[su = 1, True, su++, len = 1; While[Mod[Sum[t[strt + i], {i, 0, len - 1}], su] != 0, len++]; If[su == n, Return[Sum[t[strt + i], {i, 0, len - 1}]/n], strt += len]]];
Table[a[n], {n, 1, 43}] (* Jean-François Alcover, Aug 01 2023, after R. J. Mathar *)
CROSSREFS
Sequence in context: A166211 A086763 A064545 * A107807 A075710 A356060
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Nov 13 2005
EXTENSIONS
More terms from R. J. Mathar, May 10 2007
STATUS
approved