

A001952


A Beatty sequence: a(n) = floor(n*(2 + sqrt(2))).
(Formerly M2534 N1001)


22



3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, 47, 51, 54, 58, 61, 64, 68, 71, 75, 78, 81, 85, 88, 92, 95, 99, 102, 105, 109, 112, 116, 119, 122, 126, 129, 133, 136, 139, 143, 146, 150, 153, 157, 160, 163, 167, 170, 174, 177, 180, 184, 187, 191, 194, 198
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

It appears that the distance between the a(n)th triangular number and the nearest square is greater than floor(a(n)/2).  Ralf Stephan, Sep 14 2013


REFERENCES

L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Pellian representatives, Fib. Quart., 10 (1972), 449488.
J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors; http://www.math.sc.edu/~cooper/Sigma.pdf, 2012.  From N. J. A. Sloane, Dec 25 2012
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. AddisonWesley, Reading, MA, 1990, p. 77.
Wen An Liu and Xiao Zhao, Adjoining to (s,t)Wythoff's game its Ppositions as moves, Discrete Applied Mathematics, 27 August 2014; DOI: 10.1016/j.dam.2014.08.009. See Table 3.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181190
A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353361 (the case a=2).
Eric Weisstein's World of Mathematics, Beatty Sequence.
Index entries for sequences related to Beatty sequences


MATHEMATICA

Table[Floor[n*(2 + Sqrt[2])], {n, 60}] (* Stefan Steinerberger, Apr 15 2006 *)


CROSSREFS

Complement of A001951. Equals A001951(n)+2*n.
Cf. A026250.
A bisection of A094077.
Sequence in context: A028433 A080667 A190007 * A189795 A145383 A194028
Adjacent sequences: A001949 A001950 A001951 * A001953 A001954 A001955


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Stefan Steinerberger, Apr 15 2006


STATUS

approved



