login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080764
First differences of A049472, floor(n/sqrt(2)).
40
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0
OFFSET
0,1
COMMENTS
Fixed point of the morphism 0->1, 1->110. - Benoit Cloitre, May 31 2004
As binary constant 0.1101101110110... = 0.85826765646... (A119812), see Fxtbook link. - Joerg Arndt, May 15 2011
Characteristic word with slope 1/sqrt(2) [see J. L. Ramirez et al.]. - R. J. Mathar, Jul 09 2013
From Peter Bala, Nov 22 2013: (Start)
Sturmian word: equals the limit word S(infinity) where S(0) = 0, S(1) = 1 and for n >= 1, S(n+1) = S(n)S(n)S(n-1).
More generally, for k = 0,1,2,..., we can define a sequence of words S_k(n) by S_k(0) = 0, S_k(1) = 0...01 (k 0's) and for n >= 1, S_k(n+1) = S_k(n)S_k(n)S_k(n-1). Then the limit word S_k(infinity) is a Sturmian word whose terms are given by a(n) = floor((n + 2)/(k + sqrt(2))) - floor((n + 1)/(k + sqrt(2))).
This sequence corresponds to the case k = 0. See A159684 (case k = 1) and A171588 (case k = 2). Compare with the Fibonacci words A005614, A221150, A221151 and A221152. See also A230901. (End)
For n > 0: a(A001951(n)) = 1, a(A001952(n)) = 0. - Reinhard Zumkeller, Jul 03 2015
Binary complement of the Pell word A171588. - Michel Dekking, Feb 22 2018
FORMULA
a(n) = floor((n+2)*sqrt(2)/2) - floor((n+1)*sqrt(2)/2).
a(n) = A188295(n+2) for all n in Z. - Michael Somos, Aug 19 2018
EXAMPLE
From Peter Bala, Nov 22 2013: (Start)
The first few Sturmian words S(n) are
S(0) = 0
S(1) = 1
S(2) = 110
S(3) = 110 110 1
S(4) = 1101101 1101101 110
S(5) = 11011011101101110 11011011101101110 1101101
The lengths of the words are [1, 1, 3, 7, 17, 41, ...] = A001333. (End)
MAPLE
A080764 := proc(n)
alpha := 1/sqrt(2) ;
floor((n+2)*alpha)-floor((n+1)*alpha) ;
end proc: # R. J. Mathar, Jul 09 2013
MATHEMATICA
Nest[ Flatten[ # /. {0 -> 1, 1 -> {1, 1, 0}}] &, {1}, 7] (* Robert G. Wilson v, Apr 16 2005 *)
NestList[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0, 1}}] &, {1}, 5] // Flatten (* or *)
t = Table[Floor[n/Sqrt[2]], {n, 111}]; Drop[t, 1] - Drop[t, -1] (* Robert G. Wilson v, Nov 03 2005 *)
a[ n_] := With[{m = n + 1}, Floor[(m + 1) / Sqrt[2]] - Floor[m / Sqrt[2]]]; (* Michael Somos, Aug 19 2018 *)
PROG
(Haskell)
a080764 n = a080764_list !! n
a080764_list = tail $ zipWith (-) (tail a049472_list) a049472_list
-- Reinhard Zumkeller, Jul 03 2015
(PARI) {a(n) = n++; my(k = sqrtint(n*n\2)); n*(n+2) > 2*k*(k+2)}; /* Michael Somos, Aug 19 2018 */
KEYWORD
nonn,easy
AUTHOR
Matthew Vandermast, Mar 25 2003
STATUS
approved