The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221151 The generalized Fibonacci word f^[4]. 6
 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 LINKS W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198. P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity Proc. Amer. Math. Soc. 123 (1995), 2005-2009. José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014. FORMULA Set S_0=0, S_1=0001; thereafter S_n = S_{n-1}S_{n-2}; sequence is S_{oo}. From Peter Bala, Nov 19 2013: (Start) a(n) = floor((n + 2)/(phi + 3)) - floor((n + 1)/(phi + 3)) where phi = 1/2*(1 + sqrt(5)) denotes the golden ratio. If we read the present sequence as the digits of a decimal constant c = 0.00010 00010 00100 00100 00100 .... then we have the series representation c = sum {n >= 1} 1/10^floor(n*(phi + 3)). An alternative representation is c = 9*sum {n >= 1} floor(n/(phi + 3)) /10^n. The constant 9*c has the simple continued fraction representation [0; 1111, 10, 10^4, 10^5, 10^9, ..., 10^A000285(n), ...] (see Adams and Davison). Using this result we can find the alternating series representation c = 9*sum {n >= 1} (-1)^(n+1)*(1 + 10^A000285(3*n-1))/( (10^A000285(3*n-3) - 1)*(10^A000285(3*n) - 1) ). The series converges very rapidly: for example, the first 10 terms of the series give a value for c accurate to more than 10 million decimal places. Cf. A005614 and A221150. (End) MAPLE # fibi and fibonni implemented in A221150. A221151 := proc(n) fibonni(n, 4) ; end proc: # R. J. Mathar, Jul 09 2013 MATHEMATICA a[n_] := Floor[(n+2)/(GoldenRatio+3)] - Floor[(n+1)/(GoldenRatio+3)]; Table[a[n], {n, 0, 132}] (* Jean-François Alcover, Nov 16 2017 *) CROSSREFS Cf. A003849, A005614, A221150, A000285, A005614, A221152, A230900. Sequence in context: A101349 A295308 A284954 * A353470 A342753 A358752 Adjacent sequences: A221148 A221149 A221150 * A221152 A221153 A221154 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 23:46 EST 2022. Contains 358572 sequences. (Running on oeis4.)