login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230900
a(n) = 2^Lucas(n).
5
4, 2, 8, 16, 128, 2048, 262144, 536870912, 140737488355328, 75557863725914323419136, 10633823966279326983230456482242756608, 803469022129495137770981046170581301261101496891396417650688
OFFSET
0,1
COMMENTS
Compare with A000301(n) = 2^Fibonacci(n).
The sequence a(n) for n >= 1 gives the sequence of partial quotients (other than the first) in the continued fraction expansion of the transcendental real constant c := sum {n >= 1} 1/2^floor(n*(5 + sqrt(5))/2) = 0.13385 44229 67609 80592 ... = 1/(7 + 1/(2 + 1/(8 + 1/(16 + 1/(128 + 1/(2048 + ...)))))). See Adams Davison 1977. Cf. A014565.
The constant c has various series representations including
c = 1 - sum {n >= 1} 1/2^floor(n*(5 - sqrt(5))/2),
c = sum {n >= 1} floor(n*(5 - sqrt(5))/10)/2^n,
c = 3 - sum {n >= 1} 1/2^floor(n*(15 - sqrt(5))/22) and
c = sum {n >= 1} 1/2^floor(n*(15 + sqrt(5))/22) - 2.
LINKS
William W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32.
FORMULA
a(n) = 2^Lucas(n) = 2^A000032(n).
Recurrence: a(n) = a(n-1)*a(n-2) with a(0) = 4, a(1) = 2.
Sum_{n>=1} 1/a(n) = A121821. - Amiram Eldar, Oct 27 2020
MAPLE
a := proc(n) option remember; if n = 0 then 4 elif n = 1 then 2 else a(n-1)*a(n-2); fi; end; seq(a(n), n = 0..10);
MATHEMATICA
2^LucasL[Range[0, 15]] (* Harvey P. Dale, Jul 21 2015 *)
PROG
(PARI) for(n=0, 10, print1(2^(fibonacci(n+1) + fibonacci(n-1)), ", ")) \\ G. C. Greubel, Dec 22 2017
(Magma) [2^(Lucas(n)): n in [0..10]]; // G. C. Greubel, Dec 22 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 31 2013
STATUS
approved