The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230900 a(n) = 2^Lucas(n). 4
 4, 2, 8, 16, 128, 2048, 262144, 536870912, 140737488355328, 75557863725914323419136, 10633823966279326983230456482242756608, 803469022129495137770981046170581301261101496891396417650688 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Compare with A000301(n) = 2^Fibonacci(n). The sequence a(n) for n >= 1 gives the sequence of partial quotients (other than the first) in the continued fraction expansion of the transcendental real constant c := sum {n >= 1} 1/2^floor(n*(5 + sqrt(5))/2) = 0.13385 44229 67609 80592 ... = 1/(7 + 1/(2 + 1/(8 + 1/(16 + 1/(128 + 1/(2048 + ...)))))). See Adams Davison 1977. Cf. A014565. The constant c has various series representations including c = 1 - sum {n >= 1} 1/2^floor(n*(5 - sqrt(5))/2), c = sum {n >= 1} floor(n*(5 - sqrt(5))/10)/2^n, c = 3 - sum {n >= 1} 1/2^floor(n*(15 - sqrt(5))/22) and c = sum {n >= 1} 1/2^floor(n*(15 + sqrt(5))/22) - 2. LINKS W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198. P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009. J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32. FORMULA a(n) = 2^Lucas(n) = 2^A000032(n). Recurrence: a(n) = a(n-1)*a(n-2) with a(0) = 4, a(1) = 2. MAPLE a := proc(n) option remember; if n = 0 then 4 elif n = 1 then 2 else a(n-1)*a(n-2); fi; end; seq(a(n), n = 0..10); MATHEMATICA 2^LucasL[Range[0, 15]] (* Harvey P. Dale, Jul 21 2015 *) PROG (PARI) for(n=0, 10, print1(2^(fibonacci(n+1) + fibonacci(n-1)), ", ")) \\ G. C. Greubel, Dec 22 2017 (MAGMA) [2^(Lucas(n)): n in [0..10]]; // G. C. Greubel, Dec 22 2017 CROSSREFS Cf. A000032, A000301, A014565. Sequence in context: A288181 A110622 A130078 * A204449 A172393 A245340 Adjacent sequences:  A230897 A230898 A230899 * A230901 A230902 A230903 KEYWORD nonn,easy AUTHOR Peter Bala, Oct 31 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 09:05 EST 2020. Contains 332277 sequences. (Running on oeis4.)