OFFSET
0,1
COMMENTS
Davison shows that the continued fraction is (essentially) A000301 and proves that this constant is transcendental. - Charles R Greathouse IV, Jul 22 2013
Using Davison's result we can find an alternating series representation for the rabbit constant r as r = 1 - sum {n >= 1} (-1)^(n+1)*(1 + 2^Fibonacci(3*n+1))/( (2^(Fibonacci(3*n - 1)) - 1)*(2^(Fibonacci(3*n + 2)) - 1) ). The series converges rapidly: for example, the first 10 terms of the series give a value for r accurate to more than 1.7 million decimal places. See A005614. - Peter Bala, Nov 11 2013
The rabbit constant is the number having the infinite Fibonacci word A005614 as binary expansion; its continued fraction expansion is A000301 = 2^A000045 (after a leading zero, depending on convention). - M. F. Hasler, Nov 10 2018
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 439.
M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, New York: W. H. Freeman, 1991.
LINKS
Sean A. Irvine and Joerg Arndt, Table of n, a(n) for n = 0..2000
W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
P. G. Anderson, T. C. Brown, and P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
Joerg Arndt, Matters Computational (The Fxtbook), p. 754.
J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32.
Martin Griffiths, 96.12 The sum of a series: rational or irrational?, The Mathematical Gazette, Vol. 96, No. 535 (2012), pp. 121-124.
Clark Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
Eric Weisstein's World of Mathematics, Rabbit Constant.
FORMULA
Equals Sum_{n>=1} 1/2^b(n) where b(n) = floor(n*phi) = A000201(n).
Equals -1 + A073115.
From Peter Bala, Nov 04 2013: (Start)
The results of Adams and Davison 1977 can be used to find a variety of alternative series representations for the rabbit constant r. Here are several examples (phi denotes the golden ratio (1/2)*(1 + sqrt(5))).
r = Sum_{n >= 2} ( floor((n+1)*phi) - floor(n*phi) )/2^n = (1/2)*Sum_{n >= 1} A014675(n)/2^n.
r = Sum_{n >= 1} floor(n/phi)/2^n = Sum_{n >= 1} A005206(n-1)/2^n.
r = ( Sum_{n >= 1} 1/2^floor(n/phi) ) - 2 and r = ( Sum_{n >= 1} floor(n*phi)/2^n ) - 2 = ( Sum_{n >= 1} A000201(n)/2^n ) - 2.
More generally, for integer N >= -1, r = ( Sum_{n >= 1} 1/2^floor(n/(phi + N)) ) - (2*N + 2) and for all integer N, r = ( Sum_{n >= 1} floor(n*(phi + N))/2^n ) - (2*N + 2).
EXAMPLE
0.709803442861291314641787399444575597012502205767...
MATHEMATICA
Take[ RealDigits[ Sum[N[1/2^Floor[k*GoldenRatio], 120], {k, 0, 300}]-1][[1]], 103] (* Jean-François Alcover, Jul 28 2011, after Benoit Cloitre *)
RealDigits[ FromDigits[{Nest[Flatten[# /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 12], 0}, 2], 10, 111][[1]] (* Robert G. Wilson v, Mar 13 2014 *)
digits = 103; dm = 10; Clear[xi]; xi[b_, m_] := xi[b, m] = RealDigits[ ContinuedFractionK[1, b^Fibonacci[k], {k, 0, m}], 10, digits] // First; xi[2, dm]; xi[2, m = 2 dm]; While[xi[2, m] != xi[2, m - dm], m = m + dm]; xi[2, m] (* Jean-François Alcover, Mar 04 2015, update for versions 7 and up, after advice from Oleg Marichev *)
PROG
(PARI) /* fast divisionless routine from fxtbook */
fa(y, N=17)=
{ my(t, yl, yr, L, R, Lp, Rp);
/* as powerseries correct up to order fib(N+2)-1 */
L=0; R=1; yl=1; yr=y;
for(k=1, N, t=yr; yr*=yl; yl=t; Lp=R; Rp=R+yr*L; L=Lp; R=Rp; );
return( R )
}
a=0.5*fa(0.5) /* Joerg Arndt, Apr 15 2010 */
(PARI) my(r=1, p=(3-sqrt(5))/2, n=1); while(r>r-=1.>>(n\p), n++); A014565=r \\ M. F. Hasler, Nov 10 2018
(PARI) my(f(n)=1.<<fibonacci(n)-1, g(n)=(f(n+2)+2)/f(n)/f(n+3)); 1-g(2)+g(5)-g(8) \\ Illustration of formula from Bala's comment. Using g(8) gives 70 digits; subsequent terms (+g(11), -g(14), +g(17), ...) each multiply the precision by 4.236 ~ A098317 (=> 298, 1259, 5331, ... digits). - M. F. Hasler, Nov 10 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Dec 11 1999
EXTENSIONS
More terms from Simon Plouffe, Dec 11 1999
STATUS
approved