The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014565 Decimal expansion of rabbit constant. 21
 7, 0, 9, 8, 0, 3, 4, 4, 2, 8, 6, 1, 2, 9, 1, 3, 1, 4, 6, 4, 1, 7, 8, 7, 3, 9, 9, 4, 4, 4, 5, 7, 5, 5, 9, 7, 0, 1, 2, 5, 0, 2, 2, 0, 5, 7, 6, 7, 8, 6, 0, 5, 1, 6, 9, 5, 7, 0, 0, 2, 6, 4, 4, 6, 5, 1, 2, 8, 7, 1, 2, 8, 1, 4, 8, 4, 6, 5, 9, 6, 2, 4, 7, 8, 3, 1, 6, 1, 3, 2, 4, 5, 9, 9, 9, 3, 8, 8, 3, 9, 2, 6, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Davison shows that the continued fraction is (essentially) A000301 and proves that this constant is transcendental. - Charles R Greathouse IV, Jul 22 2013 Using Davison's result we can find an alternating series representation for the rabbit constant r as r = 1 - sum {n >= 1} (-1)^(n+1)*(1 + 2^Fibonacci(3*n+1))/( (2^(Fibonacci(3*n - 1)) - 1)*(2^(Fibonacci(3*n + 2)) - 1) ). The series converges rapidly: for example, the first 10 terms of the series give a value for r accurate to more than 1.7 million decimal places. See A005614. - Peter Bala, Nov 11 2013 The rabbit constant is the number having the infinite Fibonacci word A005614 as binary expansion; its continued fraction expansion is A000301 = 2^A000045 (after a leading zero, depending on convention). - M. F. Hasler, Nov 10 2018 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 439. M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, New York: W. H. Freeman, 1991. LINKS Sean A. Irvine and Joerg Arndt, Table of n, a(n) for n = 0..2000 W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198. P. G. Anderson, T. C. Brown, and P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity Proc. Amer. Math. Soc. 123 (1995), 2005-2009. Joerg Arndt, Matters Computational (The Fxtbook), p. 754. J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32. Martin Griffiths, 96.12 The sum of a series: rational or irrational?, The Mathematical Gazette, Vol. 96, No. 535 (2012), pp. 121-124. C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273. Eric Weisstein's World of Mathematics, Rabbit Constant. Index entries for transcendental numbers FORMULA Equals Sum_{n>=1} 1/2^b(n) where b(n) = floor(n*phi) = A000201(n). Equals -1 + A073115. From Peter Bala, Nov 04 2013: (Start) The results of Adams and Davison 1977 can be used to find a variety of alternative series representations for the rabbit constant r. Here are several examples (phi denotes the golden ratio (1/2)*(1 + sqrt(5))). r = Sum_{n >= 2} ( floor((n+1)*phi) - floor(n*phi) )/2^n = (1/2)*Sum_{n >= 1} A014675(n)/2^n. r = Sum_{n >= 1} floor(n/phi)/2^n = Sum_{n >= 1} A005206(n-1)/2^n. r = ( Sum_{n >= 1} 1/2^floor(n/phi) ) - 2 and r = ( Sum_{n >= 1} floor(n*phi)/2^n ) - 2 = ( Sum_{n >= 1} A000201(n)/2^n ) - 2. More generally, for integer N >= -1, r = ( Sum_{n >= 1} 1/2^floor(n/(phi + N)) ) - (2*N + 2) and for all integer N, r = ( Sum_{n >= 1} floor(n*(phi + N))/2^n ) - (2*N + 2). Also r = 1 - Sum_{n >= 1} 1/2^floor(n*phi^2) = 1 - Sum_{n >= 1} 1/2^A001950(n) and r = 1 - Sum_{n >= 1} floor(n*(2 - phi))/2^n = 1 - Sum_{n >= 1} A060144(n)/2^n. (End) EXAMPLE 0.709803442861291314641787399444575597012502205767... MATHEMATICA Take[ RealDigits[ Sum[N[1/2^Floor[k*GoldenRatio], 120], {k, 0, 300}]-1][[1]], 103] (* Jean-François Alcover, Jul 28 2011, after Benoit Cloitre *) RealDigits[ FromDigits[{Nest[Flatten[# /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 12], 0}, 2], 10, 111][[1]] (* Robert G. Wilson v, Mar 13 2014 *) digits = 103; dm = 10; Clear[xi]; xi[b_, m_] := xi[b, m] = RealDigits[ ContinuedFractionK[1, b^Fibonacci[k], {k, 0, m}], 10, digits] // First; xi[2, dm]; xi[2, m = 2 dm]; While[xi[2, m] != xi[2, m - dm], m = m + dm]; xi[2, m] (* Jean-François Alcover, Mar 04 2015, update for versions 7 and up, after advice from Oleg Marichev *) PROG (PARI) /* fast divisionless routine from fxtbook */ fa(y, N=17)= { my(t, yl, yr, L, R, Lp, Rp); /* as powerseries correct up to order fib(N+2)-1 */ L=0; R=1; yl=1; yr=y; for(k=1, N, t=yr; yr*=yl; yl=t; Lp=R; Rp=R+yr*L; L=Lp; R=Rp; ); return( R ) } a=0.5*fa(0.5) /* Joerg Arndt, Apr 15 2010 */ (PARI) my(r=1, p=(3-sqrt(5))/2, n=1); while(r>r-=1.>>(n\p), n++); A014565=r \\ M. F. Hasler, Nov 10 2018 (PARI) my(f(n)=1.< 298, 1259, 5331, ... digits). - M. F. Hasler, Nov 10 2018 CROSSREFS Cf. A005614, A073115, A119809, A119812. Sequence in context: A368009 A368497 A348680 * A073115 A176444 A197025 Adjacent sequences: A014562 A014563 A014564 * A014566 A014567 A014568 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Dec 11 1999 EXTENSIONS More terms from Simon Plouffe, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 09:54 EDT 2024. Contains 372620 sequences. (Running on oeis4.)