login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197025
Decimal expansion of the radius of the circle tangent to the curve y=3/(1+x^2) and to the positive x and y axes.
3
7, 0, 9, 9, 1, 4, 9, 2, 6, 8, 6, 0, 4, 3, 9, 9, 2, 1, 4, 0, 9, 5, 9, 3, 8, 8, 9, 1, 6, 2, 5, 5, 8, 8, 7, 3, 4, 8, 0, 0, 2, 9, 4, 2, 6, 7, 8, 4, 6, 5, 6, 6, 5, 4, 0, 4, 6, 9, 1, 2, 2, 1, 1, 0, 5, 0, 6, 6, 9, 0, 1, 8, 1, 5, 4, 2, 7, 7, 6, 0, 0, 7, 2, 4, 9, 1, 9, 4, 6, 5, 3, 3, 2, 0, 2, 1, 1, 5
OFFSET
1,1
COMMENTS
Let (x,y) denote the point of tangency. Then
x=1.24529475848935327220740793075336892358...
y=1.17612050304358700012836336674764176692...
slope=-1.148377151582141158728147357192644...
(The Mathematica program includes a graph.)
EXAMPLE
radius=0.70991492686043992140959388916255887...
MATHEMATICA
r = .71; c = 3;
Show[Plot[c/(1 + x^2), {x, 0, 2}],
ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, 0, 2}, {y, 0, 2}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
u[x_] := (x*(1 + x^2)^3 - 2*x*c^2)/((1 + x^2)^3 - 2*c*x*(1 + x^2))
v = x /. FindRoot[c/(1 + x^2) == u[x] + Sqrt[2*u[x]*x - x^2], {x, .9, 1.45}, WorkingPrecision -> 100]
t = Re[v]; RealDigits[t] (* x coord. of tangency pt. *)
y = c/(1 + t^2) (* y coord. of tangency pt. *)
radius = u[t]
RealDigits[radius] (* A197025 *)
slope = -2*c*t/(1 + t^2)^2 (* slope at tangency pt *)
CROSSREFS
Sequence in context: A014565 A073115 A176444 * A335763 A096408 A005481
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 08 2011
STATUS
approved