OFFSET
1,1
COMMENTS
Let (x,y) denote the point of tangency. Then
x=1.24529475848935327220740793075336892358...
y=1.17612050304358700012836336674764176692...
slope=-1.148377151582141158728147357192644...
(The Mathematica program includes a graph.)
EXAMPLE
radius=0.70991492686043992140959388916255887...
MATHEMATICA
r = .71; c = 3;
Show[Plot[c/(1 + x^2), {x, 0, 2}],
ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, 0, 2}, {y, 0, 2}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
u[x_] := (x*(1 + x^2)^3 - 2*x*c^2)/((1 + x^2)^3 - 2*c*x*(1 + x^2))
v = x /. FindRoot[c/(1 + x^2) == u[x] + Sqrt[2*u[x]*x - x^2], {x, .9, 1.45}, WorkingPrecision -> 100]
t = Re[v]; RealDigits[t] (* x coord. of tangency pt. *)
y = c/(1 + t^2) (* y coord. of tangency pt. *)
radius = u[t]
RealDigits[radius] (* A197025 *)
slope = -2*c*t/(1 + t^2)^2 (* slope at tangency pt *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 08 2011
STATUS
approved