login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197026
Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(x) at points (x,y), (-x,y).
4
4, 2, 7, 4, 3, 2, 4, 5, 1, 6, 9, 3, 5, 8, 5, 8, 2, 7, 1, 9, 2, 6, 8, 0, 2, 4, 1, 7, 9, 6, 1, 6, 4, 7, 2, 0, 3, 6, 8, 0, 0, 9, 4, 8, 2, 8, 2, 9, 0, 5, 0, 9, 5, 2, 2, 1, 7, 3, 9, 7, 4, 6, 3, 4, 1, 8, 3, 1, 9, 9, 8, 4, 8, 5, 3, 6, 3, 3, 8, 1, 6, 4, 3, 8, 6, 8, 1, 5, 0, 4, 5, 9, 7, 8, 4, 7, 7, 6, 1
OFFSET
1,1
COMMENTS
Let (x,y) denote the point of tangency, where x>0:
x=2.3973091169572703557415944811143634671454653692...
y=0.7355734556385944841653303915319993812641279844...
slope=0.6774449729386857532010706302057868510403567...
(The Mathematica program includes a graph.)
EXAMPLE
radius=4.27432451693585827192680241796164720368009482...
MATHEMATICA
r = 4.27; c = 1;
Show[Plot[-Cos[c*x], {x, -5, 5}],
ContourPlot[x^2 + (y - r)^2 == r^2, {x, -5, 5}, {y, -1.5, 8.7}], PlotRange -> All, AspectRatio -> Automatic]
u[x_] := -Cos[c*x] + x/(c*Sin[c*x]);
t = x /. FindRoot[Sqrt[u[x]^2 - x^2] == u[x] + Cos[c*x], {x, 2, 3}, WorkingPrecision -> 100]
RealDigits[t] (* x coordinate of tangency point *)
y = -Cos[c*t] (* y coordinate of tangency point *)
radius = u[t]
RealDigits[radius] (* A197026 *)
slope = c*Sin[c*t] (* slope at tangency point *)
CROSSREFS
Sequence in context: A169756 A329796 A002949 * A334417 A195779 A130849
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 09 2011
STATUS
approved