Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 02 2013 13:00:21
%S 4,2,7,4,3,2,4,5,1,6,9,3,5,8,5,8,2,7,1,9,2,6,8,0,2,4,1,7,9,6,1,6,4,7,
%T 2,0,3,6,8,0,0,9,4,8,2,8,2,9,0,5,0,9,5,2,2,1,7,3,9,7,4,6,3,4,1,8,3,1,
%U 9,9,8,4,8,5,3,6,3,3,8,1,6,4,3,8,6,8,1,5,0,4,5,9,7,8,4,7,7,6,1
%N Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(x) at points (x,y), (-x,y).
%C Let (x,y) denote the point of tangency, where x>0:
%C x=2.3973091169572703557415944811143634671454653692...
%C y=0.7355734556385944841653303915319993812641279844...
%C slope=0.6774449729386857532010706302057868510403567...
%C (The Mathematica program includes a graph.)
%e radius=4.27432451693585827192680241796164720368009482...
%t r = 4.27; c = 1;
%t Show[Plot[-Cos[c*x], {x, -5, 5}],
%t ContourPlot[x^2 + (y - r)^2 == r^2, {x, -5, 5}, {y, -1.5, 8.7}], PlotRange -> All, AspectRatio -> Automatic]
%t u[x_] := -Cos[c*x] + x/(c*Sin[c*x]);
%t t = x /. FindRoot[Sqrt[u[x]^2 - x^2] == u[x] + Cos[c*x], {x, 2, 3}, WorkingPrecision -> 100]
%t RealDigits[t] (* x coordinate of tangency point *)
%t y = -Cos[c*t] (* y coordinate of tangency point *)
%t radius = u[t]
%t RealDigits[radius] (* A197026 *)
%t slope = c*Sin[c*t] (* slope at tangency point *)
%Y Cf. A197027, A196028.
%K nonn,cons
%O 1,1
%A _Clark Kimberling_, Oct 09 2011