login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002949
Continued fraction for cube root of 6.
(Formerly M3202)
11
1, 1, 4, 2, 7, 3, 508, 1, 5, 5, 1, 1, 1, 2, 1, 1, 24, 1, 1, 1, 3, 3, 30, 4, 10, 158, 6, 1, 1, 2, 12, 1, 10, 1, 1, 3, 2, 1, 1, 89, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 7, 1, 2, 18, 1, 17, 2, 2, 10, 14, 3, 1, 2, 1, 2, 1, 5, 1, 1, 2, 26, 1, 4, 65, 1, 1, 1, 27, 1, 2, 1, 4
OFFSET
0,3
REFERENCES
H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
EXAMPLE
6^(1/3) = 1.81712059283213965... = 1 + 1/(1 + 1/(4 + 1/(2 + 1/(7 + ...)))). - Harry J. Smith, May 08 2009
MAPLE
with(numtheory):
cfrac(6^(1/3), 100, 'quotients'); # Muniru A Asiru, Nov 02 2018
MATHEMATICA
ContinuedFraction[6^(1/3), 100] (* G. C. Greubel, Nov 02 2018 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(6^(1/3)); for (n=1, 20000, write("b002949.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 08 2009
(Magma) SetDefaultRealField(RealField(100)); ContinuedFraction(6^(1/3)); // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A005486 (decimal expansion).
Cf. A002359, A002360 (convergents).
Sequence in context: A180076 A169756 A329796 * A197026 A334417 A195779
KEYWORD
nonn,cofr
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 05 2024
STATUS
approved