login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002948
Continued fraction for cube root of 5.
(Formerly M0300)
3
1, 1, 2, 2, 4, 3, 3, 1, 5, 1, 1, 4, 10, 17, 1, 14, 1, 1, 3052, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3, 2, 1, 13, 5, 1, 1, 1, 13, 2, 41, 1, 4, 12, 1, 5, 2, 7, 1, 1, 3, 33, 2, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 15, 12, 8, 10, 48, 1, 2, 1, 1, 3, 4, 1, 474, 1, 13, 2, 4, 1, 1, 49
OFFSET
0,3
REFERENCES
H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
G. Xiao, Contfrac
EXAMPLE
5^(1/3) = 1.70997594667669698... = 1 + 1/(1 + 1/(2 + 1/(2 + 1/(4 + ...)))). - Harry J. Smith, May 08 2009
MAPLE
with(numtheory): cfrac(5^(1/3), 80, 'quotients'); # Muniru A Asiru, Nov 02 2018
MATHEMATICA
ContinuedFraction[5^(1/3), 100] (* G. C. Greubel, Nov 02 2018 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(5^(1/3)); for (n=1, 20000, write("b002948.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 08 2009
(Magma) SetDefaultRealField(RealField(100)); ContinuedFraction(5^(1/3)); // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A005481 (decimal expansion).
Cf. A002357, A002358 (convergents).
Sequence in context: A094953 A332862 A122687 * A117113 A239430 A260951
KEYWORD
nonn,cofr
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 04 2024
STATUS
approved