login
A348680
Decimal expansion of the average length of a chord in a unit square defined by a point on the perimeter and a direction, both uniformly and independently chosen at random.
4
7, 0, 9, 8, 0, 1, 5, 0, 6, 6, 1, 4, 0, 0, 7, 8, 2, 7, 4, 6, 3, 7, 4, 7, 3, 1, 4, 6, 4, 4, 5, 1, 7, 9, 7, 1, 9, 4, 9, 9, 4, 0, 8, 5, 3, 4, 4, 5, 4, 5, 2, 4, 7, 3, 5, 5, 8, 9, 5, 4, 9, 2, 1, 5, 0, 7, 8, 9, 8, 0, 1, 3, 5, 9, 1, 0, 1, 4, 4, 4, 2, 2, 6, 2, 1, 0, 4, 2, 9, 8, 8, 2, 9, 5, 7, 0, 1, 2, 5, 7, 9, 7, 9, 1, 1
OFFSET
0,1
REFERENCES
A. M. Mathai, An introduction to geometrical probability: distributional aspects with applications, Amsterdam: Gordon and Breach, 1999, p. 221, ex. 2.3.7.
LINKS
Rodney Coleman, Random paths through convex bodies, Journal of Applied Probability, Vol. 6, No. 2 (1969), pp. 430-441; alternative link; author's link.
Maurice Horowitz, Probability of random paths across elementary geometrical shapes, Journal of Applied Probability, Vol. 2, No. 1 (1965), pp. 169-177; Correction, ibid., Vol. 3, No. 1 (1966), p. 285.
Philip W. Kuchel and Rodney J. Vaughan, Average Lengths of Chords in a Square, Mathematics Magazine, Vol. 54, No. 5 (1981), pp. 261-269.
FORMULA
Equals (3*log(1 + sqrt(2)) + 1 - sqrt(2))/Pi.
EXAMPLE
0.70980150661400782746374731464451797194994085344545...
MATHEMATICA
RealDigits[(3 * Log[1 + Sqrt[2]] + 1 - Sqrt[2])/Pi, 10, 100][[1]]
PROG
(PARI) (3*log(1 + sqrt(2)) + 1 - sqrt(2))/Pi \\ Michel Marcus, Oct 29 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Oct 29 2021
STATUS
approved