login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000301
a(n) = a(n-1)*a(n-2) with a(0) = 1, a(1) = 2; also a(n) = 2^Fibonacci(n).
41
1, 2, 2, 4, 8, 32, 256, 8192, 2097152, 17179869184, 36028797018963968, 618970019642690137449562112, 22300745198530623141535718272648361505980416, 13803492693581127574869511724554050904902217944340773110325048447598592
OFFSET
0,2
COMMENTS
Continued fraction expansion of s = A073115 = 1.709803442861291... = Sum_{k >= 0} (1/2^floor(k * phi)) where phi is the golden ratio (1 + sqrt(5))/2. - Benoit Cloitre, Aug 19 2002
The continued fraction expansion of the above constant s is [1; 1, 2, 2, 4, ...], that of the rabbit constant r = s-1 = A014565 is [0; 1, 2, 2, 4, ...]. - M. F. Hasler, Nov 10 2018
REFERENCES
Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 913.
LINKS
Manosij Ghosh Dastidar and Michael Wallner, Bijections between Variants of Dyck Paths and Integer Compositions, arXiv:2406.16404 [math.CO], 2024. See p. 1.
J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc., 63 (1977), 29-32.
Samuele Giraudo, Intervals of balanced binary trees in the Tamari lattice, arXiv preprint arXiv:1107.3472 [math.CO], 2011-2012, and Theor Comput Sci 420 (2012) 1-27.
Bertrand Teguia Tabuguia, Computing with D-Algebraic Sequences, arXiv:2412.20630 [math.AG], 2024. See p. 9.
FORMULA
a(n) ~ k^phi^n with k = 2^(1/sqrt(5)) = 1.3634044... and phi the golden ratio. - Charles R Greathouse IV, Jan 12 2012
a(n) = A000304(n+3) / A010098(n+1). - Reinhard Zumkeller, Jul 06 2014
Sum_{n>=0} 1/a(n) = A124091. - Amiram Eldar, Oct 27 2020
Limit_{n->oo} a(n)/a(n-1)^phi = 1. - Peter Woodward, Nov 24 2023
MAPLE
A000301 := proc(n) option remember;
if n < 2 then 1+n
else A000301(n-1)*A000301(n-2)
fi
end:
seq(A000301(n), n=0..15);
MATHEMATICA
2^Fibonacci[Range[0, 14]] (* Alonso del Arte, Jul 28 2016 *)
PROG
(Magma) [2^Fibonacci(n): n in [0..20]]; // Vincenzo Librandi, Apr 18 2011
(PARI) a(n)=1<<fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012
(Haskell)
a000301 = a000079 . a000045
a000301_list = 1 : scanl (*) 2 a000301_list
-- Reinhard Zumkeller, Mar 20 2013
(SageMath) [2^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Mar 15 1996
EXTENSIONS
Offset changed from 1 to 0 by Vincenzo Librandi, Apr 18 2011
STATUS
approved