OFFSET
0,2
COMMENTS
Continued fraction expansion of s = A073115 = 1.709803442861291... = Sum_{k >= 0} (1/2^floor(k * phi)) where phi is the golden ratio (1 + sqrt(5))/2. - Benoit Cloitre, Aug 19 2002
The continued fraction expansion of the above constant s is [1; 1, 2, 2, 4, ...], that of the rabbit constant r = s-1 = A014565 is [0; 1, 2, 2, 4, ...]. - M. F. Hasler, Nov 10 2018
REFERENCES
Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 913.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..18
Manosij Ghosh Dastidar and Michael Wallner, Bijections between Variants of Dyck Paths and Integer Compositions, arXiv:2406.16404 [math.CO], 2024. See p. 1.
J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc., 63 (1977), 29-32.
Samuele Giraudo, Intervals of balanced binary trees in the Tamari lattice, arXiv preprint arXiv:1107.3472 [math.CO], 2011-2012, and Theor Comput Sci 420 (2012) 1-27.
Bertrand Teguia Tabuguia, Computing with D-Algebraic Sequences, arXiv:2412.20630 [math.AG], 2024. See p. 9.
FORMULA
a(n) ~ k^phi^n with k = 2^(1/sqrt(5)) = 1.3634044... and phi the golden ratio. - Charles R Greathouse IV, Jan 12 2012
Sum_{n>=0} 1/a(n) = A124091. - Amiram Eldar, Oct 27 2020
Limit_{n->oo} a(n)/a(n-1)^phi = 1. - Peter Woodward, Nov 24 2023
MAPLE
MATHEMATICA
2^Fibonacci[Range[0, 14]] (* Alonso del Arte, Jul 28 2016 *)
PROG
(Magma) [2^Fibonacci(n): n in [0..20]]; // Vincenzo Librandi, Apr 18 2011
(PARI) a(n)=1<<fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012
(Haskell)
a000301 = a000079 . a000045
a000301_list = 1 : scanl (*) 2 a000301_list
-- Reinhard Zumkeller, Mar 20 2013
(SageMath) [2^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Mar 15 1996
EXTENSIONS
Offset changed from 1 to 0 by Vincenzo Librandi, Apr 18 2011
STATUS
approved