login
A124091
Decimal expansion of Fibonacci binary constant: Sum{i>=0} (1/2)^Fibonacci(i).
7
2, 4, 1, 0, 2, 7, 8, 7, 9, 7, 2, 0, 7, 8, 6, 5, 8, 9, 1, 7, 9, 4, 0, 4, 3, 0, 2, 4, 4, 7, 1, 0, 6, 3, 1, 4, 4, 4, 8, 3, 4, 2, 3, 9, 2, 4, 5, 9, 5, 2, 7, 8, 7, 7, 2, 5, 9, 3, 2, 9, 2, 4, 6, 7, 9, 3, 0, 0, 7, 3, 5, 1, 6, 8, 2, 6, 0, 2, 7, 9, 4, 5, 3, 5, 1, 6, 1, 2, 3, 3, 0, 1, 2, 1, 4, 5, 9, 0, 2, 3, 3, 2, 8, 5, 1
OFFSET
1,1
COMMENTS
This constant is transcendental, see A084119. - Charles R Greathouse IV, Nov 12 2014
LINKS
D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary expansions of algebraic numbers, Journal de Théorie des Nombres de Bordeaux 16 (2004), 487-518.
FORMULA
Equals Sum_{i>=0} 1/2^A000045(i).
Equals A084119 + 1.
EXAMPLE
2.4102787972078658917940430244710631444834239245952787725932...
MATHEMATICA
RealDigits[ N[ Sum[(1/2)^Fibonacci[i], {i, 0, Infinity}], 111]][[1]] (* Robert G. Wilson v, Nov 26 2006 *)
PROG
(PARI) a=0 ; for(n=0, 30, a += .5^fibonacci(n) ; print(a) ; )
(PARI) default(realprecision, 20080); x=suminf(k=0, 1/2^fibonacci(k)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b124091.txt", n, " ", d)) \\ Harry J. Smith, May 04 2009
CROSSREFS
Cf. A007404 (Kempner-Mahler number), A125600 (continued fraction), A084119 (essentially the same).
Cf. A000301.
Sequence in context: A010586 A354499 A070678 * A067849 A164268 A294390
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Nov 25 2006
EXTENSIONS
More terms from Robert G. Wilson v, Nov 26 2006
STATUS
approved