OFFSET
0,3
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Reinhard Zumkeller, Haskell programs for A054225, A054242, A201376, A201377
FORMULA
For references, programs and g.f. see A054225.
EXAMPLE
Partitions of (3,1) into positive pairs, T(3,1) = 7:
(3,1),
(3,0) + (0,1),
(2,1) + (1,0),
(2,0) + (1,1),
(2,0) + (1,0) + (0,1),
(1,1) + (1,0) + (1,0),
(1,0) + (1,0) + (1,0) + (0,1).
First ten rows of triangle:
0: 1
1: 1 2
2: 2 4 9
3: 3 7 16 31
4: 5 12 29 57 109
5: 7 19 47 97 189 339
6: 11 30 77 162 323 589 1043
7: 15 45 118 257 522 975 1752 2998
8: 22 67 181 401 831 1576 2876 4987 8406
9: 30 97 267 608 1279 2472 4571 8043 13715 22652
X: 42 139 392 907 1941 3804 7128 12693 21893 36535 59521
MATHEMATICA
max = 10; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max }, {k, 0, n}], {x, 0, 2max }, {y, 0, 2max }]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max }, {y, 0, 2max }], {x, y}]; t[n_, k_] := coes[[n+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, Dec 05 2011 *)
p = 2; q = 3; b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n] , 1|n]}]]; t[n_, k_] := b[p^n*q^k, p^n*q^k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
PROG
(Haskell) -- see link.
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Nov 30 2011
EXTENSIONS
Entry revised by N. J. A. Sloane, Nov 30 2011
STATUS
approved