The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002756 Number of bipartite partitions of n white objects and 7 black ones.
(Formerly M4964 N2129)
5
15, 45, 118, 257, 522, 975, 1752, 2998, 4987, 8043, 12693, 19584, 29719, 44324, 65210, 94642, 135805, 192699, 270822, 377048, 520624, 713123, 969784, 1309646, 1757447, 2343931, 3108553, 4100220, 5380964, 7027376, 9135769, 11824507 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Number of ways to factor p^n*q^7 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^7}. - Joerg Arndt, Jan 01 2024
REFERENCES
M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) = if n <= 7 then A054225(7,n) else A054225(n,7). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ 3*n^(5/2) * exp(Pi*sqrt(2*n/3)) / (140*sqrt(2)*Pi^7). - Vaclav Kotesovec, Feb 01 2016
MATHEMATICA
p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^7, p^n*q^7]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[(15 + 15*x + 13*x^2 + 6*x^3 - 5*x^4 - 15*x^5 - 28*x^6 - 34*x^7 - 26*x^8 - 10*x^9 + 6*x^10 + 25*x^11 + 27*x^12 + 31*x^13 + 20*x^14 + 3*x^15 - 9*x^16 - 16*x^17 - 17*x^18 - 9*x^19 - 4*x^20 + 8*x^22 + 6*x^23 + 4*x^24 - 3*x^25 - 3*x^26 + x^27)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
CROSSREFS
Column 7 of A054225.
Cf. A005380.
Sequence in context: A270563 A126228 A072251 * A039450 A127069 A346853
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Christian G. Bower, Jan 08 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 23:39 EDT 2024. Contains 372608 sequences. (Running on oeis4.)