login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002755
Number of bipartite partitions of n white objects and 6 black ones.
(Formerly M4784 N2041)
21
11, 30, 77, 162, 323, 589, 1043, 1752, 2876, 4571, 7128, 10860, 16306, 24051, 35040, 50355, 71609, 100697, 140349, 193784, 265505, 360889, 487214, 653243, 870613, 1153322, 1519658, 1991689, 2597762, 3372107, 4358198, 5608418, 7188632
OFFSET
0,1
COMMENTS
Number of ways to factor p^n*q^6 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^6}. - Joerg Arndt, Jan 01 2024
REFERENCES
M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = if n <= 6 then A054225(6,n) else A054225(n,6). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ sqrt(3) * n^2 * exp(Pi*sqrt(2*n/3)) / (40*Pi^6). - Vaclav Kotesovec, Feb 01 2016
MATHEMATICA
b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[3^6*2^n, 3^6*2^n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[(11 + 8*x + 6*x^2 - 7*x^4 - 13*x^5 - 19*x^6 - 10*x^7 - 3*x^8 + 7*x^9 + 11*x^10 + 15*x^11 + 6*x^12 - 2*x^14 - 7*x^15 - 4*x^16 - 2*x^17 + 3*x^18 + 2*x^19 - x^20)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
PROG
(Python)
from sympy import divisors, isprime
from functools import cache
@cache
def T(n, m): # after Indranil Ghosh in A001055
if isprime(n): return 1 if n <= m else 0
s = sum(T(n//d, d) for d in divisors(n)[1:-1] if d <= m)
return s + 1 if n <= m else s
def a(n): return (lambda x: T(x, x))(2**n * 3**6)
print([a(n) for n in range(33)]) # Michael S. Branicky, Nov 30 2021
CROSSREFS
Column 6 of A054225.
Cf. A005380.
Sequence in context: A109943 A303856 A137411 * A346852 A157827 A242276
KEYWORD
nonn
EXTENSIONS
Edited by Christian G. Bower, Jan 08 2004
STATUS
approved