login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072251
(3*a(n)+1)/2^(2*n + 1) = 23-6*n.
0
15, 45, 117, 213, -171, -4779, -35499, -207531, -1092267, -5417643, -25864875, -120236715, -548055723, -2460658347, -10916375211, -47960468139, -209021741739, -904806443691, -3894103681707, -16675926354603, -71101751929515, -301999193762475, -1278365519227563
OFFSET
0,1
COMMENTS
Related to the Collatz conjecture.
FORMULA
a(n) = ((46-12*n)*4^n-1)/3. - Don Reble, Oct 31 2005
a(0)=15, a(1)=45, a(2)=117, a(n)=9*a(n-1)-24*a(n-2)+16*a(n-3). - Harvey P. Dale, Sep 14 2012
G.f.: ( -15+90*x-72*x^2 ) / ( (x-1)*(-1+4*x)^2 ). - R. J. Mathar, Nov 07 2015
MATHEMATICA
Table[((46-12n)4^n-1)/3, {n, 0, 30}] (* or *) LinearRecurrence[{9, -24, 16}, {15, 45, 117}, 40] (* Harvey P. Dale, Sep 14 2012 *)
CROSSREFS
Sequence in context: A278337 A270563 A126228 * A002756 A039450 A127069
KEYWORD
sign,easy,less
AUTHOR
N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002
EXTENSIONS
Edited and extended by David Wasserman, Dec 27 2006
Corrected by N. J. A. Sloane, Mar 01 2007
STATUS
approved