login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(3*a(n)+1)/2^(2*n + 1) = 23-6*n.
0

%I #14 Oct 19 2017 03:14:04

%S 15,45,117,213,-171,-4779,-35499,-207531,-1092267,-5417643,-25864875,

%T -120236715,-548055723,-2460658347,-10916375211,-47960468139,

%U -209021741739,-904806443691,-3894103681707,-16675926354603,-71101751929515,-301999193762475,-1278365519227563

%N (3*a(n)+1)/2^(2*n + 1) = 23-6*n.

%C Related to the Collatz conjecture.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (9, -24, 16).

%F a(n) = ((46-12*n)*4^n-1)/3. - _Don Reble_, Oct 31 2005

%F a(0)=15, a(1)=45, a(2)=117, a(n)=9*a(n-1)-24*a(n-2)+16*a(n-3). - _Harvey P. Dale_, Sep 14 2012

%F G.f.: ( -15+90*x-72*x^2 ) / ( (x-1)*(-1+4*x)^2 ). - _R. J. Mathar_, Nov 07 2015

%t Table[((46-12n)4^n-1)/3,{n,0,30}] (* or *) LinearRecurrence[{9,-24,16},{15,45,117},40] (* _Harvey P. Dale_, Sep 14 2012 *)

%K sign,easy,less

%O 0,1

%A N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002

%E Edited and extended by _David Wasserman_, Dec 27 2006

%E Corrected by _N. J. A. Sloane_, Mar 01 2007