login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072248
Triangle T(n,k) (n >= 2, 1 <= k <= n-1) giving number of non-crossing trees with n nodes and height k.
1
1, 1, 2, 1, 7, 4, 1, 20, 26, 8, 1, 54, 126, 76, 16, 1, 143, 548, 504, 200, 32, 1, 376, 2259, 2900, 1656, 496, 64, 1, 986, 9034, 15506, 11528, 4896, 1184, 128, 1, 2583, 35469, 79354, 73172, 39552, 13536, 2752, 256, 1, 6764, 137644, 394642, 439272, 285992, 123904, 35712, 6272, 512
OFFSET
2,3
COMMENTS
For n >= 2, the n-th row has n-1 terms.
LINKS
E. Deutsch and M. Noy, Statistics on non-crossing trees, Discrete Math., 254 (2002), 75-87.
FORMULA
Column g.f. are T(k) - T(k-1) (k = 1, 2, ...), where T(0) = z and T(k) = z/(1 - T(k-1)^2/z). - Emeric Deutsch, Dec 30 2004
EXAMPLE
Triangle T(n,k) begins:
1;
1, 2;
1, 7, 4;
1, 20, 26, 8;
1, 54, 126, 76, 16;
1, 143, 548, 504, 200, 32;
1, 376, 2259, 2900, 1656, 496, 64;
1, 986, 9034, 15506, 11528, 4896, 1184, 128;
MAPLE
T[0]:=z: for k from 1 to 10 do T[k]:=simplify(z/(1-T[k-1]^2/z)) od:for k from 1 to 10 do t[k]:=series(T[k]-T[k-1], z=0, 15) od: for n from 2 to 11 do seq(coeff(t[k], z^n), k=1..n-1) od; # Emeric Deutsch, Dec 30 2004
CROSSREFS
Row sums give A001764.
Sequence in context: A115629 A296461 A144696 * A317360 A177011 A092276
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 06 2002
EXTENSIONS
More terms from Emeric Deutsch, Dec 30 2004
STATUS
approved