OFFSET
1,2
COMMENTS
With offset 0, Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A006013. - Philippe Deléham, Jan 23 2010
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
Paul Barry, The second production matrix of a Riordan array, arXiv:2011.13985 [math.CO], 2020.
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
FORMULA
T(n, k) = 2*k*binomial(3n-k, n-k)/(3n-k).
G.f.: 1/(1-t*z*g^2), where g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z) is the g.f. of the sequence A001764.
T(n, k) = Sum_{j>=1} j*T(n-1, k-2+j). - Philippe Deléham, Sep 14 2005
With offset 0, T(n,k) = ((n+1)/(k+1))*binomial(3n-k+1, n-k). - Philippe Deléham, Jan 23 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix
2, 1;
3, 2, 1;
4, 3, 2, 1;
5, 4, 3, 2, 1;
...
Top row of M^(n-1) generates n-th row terms of triangle A092276. Leftmost terms of each row = A006013 starting (1, 2, 7, 30, 143, ...). (End)
Working with an offset of 0, the inverse array is the Riordan array ((1 - x)^2, x*(1 - x)^2). - Peter Bala, Apr 30 2024
EXAMPLE
Triangle begins:
1;
2, 1;
7, 4, 1;
30, 18, 6, 1;
143, 88, 33, 8, 1;
728, 455, 182, 52, 10, 1;
3876, 2448, 1020, 320, 75, 12, 1;
...
Top row of M^3 = (30, 18, 6, 1)
MAPLE
T := proc(n, k) if k=n then 1 else 2*k*binomial(3*n-k, n-k)/(3*n-k) fi end: seq(seq(T(n, k), k=1..n), n=1..11);
MATHEMATICA
t[n_, n_] = 1; t[n_, k_] := 2*k*Binomial[3*n-k, n-k]/(3*n-k); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, after Maple *)
PROG
(PARI) T(n, k) = 2*k*binomial(3*n-k, n-k)/(3*n-k); \\ Andrew Howroyd, Nov 06 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 24 2004
STATUS
approved