|
|
A092277
|
|
a(n) = 7*n^2 + n.
|
|
2
|
|
|
0, 8, 30, 66, 116, 180, 258, 350, 456, 576, 710, 858, 1020, 1196, 1386, 1590, 1808, 2040, 2286, 2546, 2820, 3108, 3410, 3726, 4056, 4400, 4758, 5130, 5516, 5916, 6330, 6758, 7200, 7656, 8126, 8610, 9108, 9620, 10146, 10686, 11240, 11808, 12390, 12986, 13596
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
First bisection of A219191. - Bruno Berselli, Nov 15 2012
|
|
LINKS
|
Table of n, a(n) for n=0..44.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
a(n) = A000290(n)*7 + n = A033582(n) + n. - Omar E. Pol, Dec 22 2008
a(n) = a(n-1) + 14*n - 6 with n>0, a(0)=0. - Vincenzo Librandi, Nov 17 2010
|
|
EXAMPLE
|
From Bruno Berselli, Oct 27 2017: (Start)
After 0:
8 = -(1) + (2+3+4).
30 = -(1+2) + (3+4+5+6+7+8).
66 = -(1+2+3) + (4+5+6+7+8+9+10+11+12).
116 = -(1+2+3+4) + (5+6+7+8+9+10+11+12+13+14+15+16). (End)
|
|
MATHEMATICA
|
s=0; lst={s}; Do[s+=n++ +8; AppendTo[lst, s], {n, 0, 8!, 14}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
|
|
PROG
|
(PARI) a(n)=7*n^2+n \\ Charles R Greathouse IV, Jun 17 2017
|
|
CROSSREFS
|
Cf. A000290, A033582. - Omar E. Pol, Dec 22 2008
Sequence in context: A071931 A333657 A074670 * A008469 A299279 A184323
Adjacent sequences: A092274 A092275 A092276 * A092278 A092279 A092280
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Evgeniy A. Chukhlomin (dkea(AT)yandex.ru), Feb 18 2004
|
|
STATUS
|
approved
|
|
|
|