login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of pairs.
5

%I #53 May 11 2023 18:32:22

%S 1,1,2,2,4,9,3,7,16,31,5,12,29,57,109,7,19,47,97,189,339,11,30,77,162,

%T 323,589,1043,15,45,118,257,522,975,1752,2998,22,67,181,401,831,1576,

%U 2876,4987,8406,30,97,267,608,1279,2472,4571,8043,13715,22652,42,139,392,907,1941,3804,7128,12693,21893,36535,59521

%N Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of pairs.

%C By analogy with ordinary partitions (A000041). The empty partition gives T(0,0)=1 by definition. A201377 and A054225 give partitions of pairs into sums of distinct pairs.

%C Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1.

%H Alois P. Heinz, <a href="/A201376/b201376.txt">Rows n = 0..140, flattened</a>

%H Reinhard Zumkeller, <a href="/A054225/a054225_1.lhs.txt">Haskell programs for A054225, A054242, A201376, A201377</a>

%F For references, programs and g.f. see A054225.

%e Partitions of (3,1) into positive pairs, T(3,1) = 7:

%e (3,1),

%e (3,0) + (0,1),

%e (2,1) + (1,0),

%e (2,0) + (1,1),

%e (2,0) + (1,0) + (0,1),

%e (1,1) + (1,0) + (1,0),

%e (1,0) + (1,0) + (1,0) + (0,1).

%e First ten rows of triangle:

%e 0: 1

%e 1: 1 2

%e 2: 2 4 9

%e 3: 3 7 16 31

%e 4: 5 12 29 57 109

%e 5: 7 19 47 97 189 339

%e 6: 11 30 77 162 323 589 1043

%e 7: 15 45 118 257 522 975 1752 2998

%e 8: 22 67 181 401 831 1576 2876 4987 8406

%e 9: 30 97 267 608 1279 2472 4571 8043 13715 22652

%e X: 42 139 392 907 1941 3804 7128 12693 21893 36535 59521

%t max = 10; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max }, {k, 0, n}], {x, 0, 2max }, {y, 0, 2max }]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max }, {y, 0, 2max }], {x, y}]; t[n_, k_] := coes[[n+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* _Jean-François Alcover_, Dec 05 2011 *)

%t p = 2; q = 3; b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n] , 1|n]}]]; t[n_, k_] := b[p^n*q^k, p^n*q^k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 13 2014, after _Alois P. Heinz_ *)

%o (Haskell) -- see link.

%Y T(n,0) = A000041(n);

%Y T(1,k) = A000070(k), k <= 1; T(n,1) = A000070(n), n > 1;

%Y T(2,k) = A000291(k), k <= 2; T(n,2) = A000291(n), n > 2;

%Y T(3,k) = A000412(k), k <= 3; T(n,3) = A000412(n), n > 3;

%Y T(4,k) = A000465(k), k <= 4; T(n,4) = A000465(n), n > 4;

%Y T(5,k) = A000491(k), k <= 5; T(n,5) = A000491(n), n > 5;

%Y T(6,k) = A002755(k), k <= 6; T(n,6) = A002755(n), n > 6;

%Y T(7,k) = A002756(k), k <= 7; T(n,7) = A002756(n), n > 7;

%Y T(8,k) = A002757(k), k <= 8; T(n,8) = A002757(n), n > 8;

%Y T(9,k) = A002758(k), k <= 9; T(n,9) = A002758(n), n > 9;

%Y T(10,k) = A002759(n), k <= 10; T(n,10) = A002759(n), n > 10;

%Y T(n,n) = A002774(n).

%Y See A054225 for another version.

%Y Cf. A000041, A054242, A201377.

%K nonn,tabl

%O 0,3

%A _Reinhard Zumkeller_, Nov 30 2011

%E Entry revised by _N. J. A. Sloane_, Nov 30 2011