login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054242 Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of distinct pairs. 13
1, 1, 1, 1, 2, 1, 2, 3, 3, 2, 2, 5, 5, 5, 2, 3, 7, 9, 9, 7, 3, 4, 10, 14, 17, 14, 10, 4, 5, 14, 21, 27, 27, 21, 14, 5, 6, 19, 31, 42, 46, 42, 31, 19, 6, 8, 25, 44, 64, 74, 74, 64, 44, 25, 8, 10, 33, 61, 93, 116, 123, 116, 93, 61, 33, 10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

By analogy with ordinary partitions into distinct parts (A000009). The empty partition gives T(0,0)=1 by definition. A054225 and A201376 give pair partitions with repeats allowed.

Also number of partitions into pairs which are not both even.

In the paper by S. M. Luthra: "Partitions of bipartite numbers when the summands are unequal", the square table on page 370 contains an errors. In the formula (6, p. 372) for fixed m there should be factor 1/m!. The correct asymptotic formula is q(m, n) ~ (sqrt(12*n)/Pi)^m * exp(Pi*sqrt(n/3)) / (4*3^(1/4)*m!*n^(3/4)). The same error is also in article by F. C. Auluck (see A054225). - Vaclav Kotesovec, Feb 02 2016

LINKS

Alois P. Heinz, Rows n = 0..75, flattened

S. M. Luthra, Partitions of bipartite numbers when the summands are unequal, Proceedings of the Indian National Science Academy, vol.23, 1957, issue 5A, p. 370-376. [broken link]

Reinhard Zumkeller, Haskell programs for A054225, A054242, A201376, A201377

FORMULA

G.f.: (1/2)*Product(1+x^i*y^j), i, j>=0.

EXAMPLE

The second row (n=1) is 1,1 since (1,0) and (0,1) each have a single partition.

The third row (n=2) is 1, 2, 1 from (2,0), (1,1) or (1,0)+(0,1), (0,2).

In the fourth row, T(1,3)=5 from (1,3), (0,3)+(1,0), (0,2)+(1,1), (0,2)+(0,1)+(1,0), (0,1)+(1,2).

The triangle begins:

  1;

  1,  1;

  1,  2,  1;

  2,  3,  3,  2;

  2,  5,  5,  5,  2;

  3,  7,  9,  9,  7,  3;

  4, 10, 14, 17, 14, 10,  4;

  5, 14, 21, 27, 27, 21, 14,  5;

  6, 19, 31, 42, 46, 42, 31, 19,  6;

  8, 25, 44, 64, 74, 74, 64, 44, 25, 8;

  ...

MATHEMATICA

max = 10; f[x_, y_] := Product[1 + x^n*y^k, {n, 0, max}, {k, 0, max}]/2; se = Series[f[x, y], {x, 0, max}, {y, 0, max}] ; coes = CoefficientList[ se, {x, y}]; t[n_, k_] := coes[[n-k+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* Jean-Fran├žois Alcover, Dec 06 2011 *)

PROG

(Haskell) see Zumkeller link.

CROSSREFS

See A201377 for the same triangle formatted in a different way.

The outer diagonals are T(n,0) = T(n,n) = A000009(n).

Cf. A054225.

T(2*n,n) = A219554(n). Row sums give A219555. - Alois P. Heinz, Nov 22 2012

Columns 0-5: A000009, A036469, A268345, A268346, A268347, A268348.

Sequence in context: A232094 A143902 A085472 * A033767 A033775 A033791

Adjacent sequences:  A054239 A054240 A054241 * A054243 A054244 A054245

KEYWORD

easy,nonn,tabl,nice

AUTHOR

Marc LeBrun, Feb 08 2000 and Jul 01 2003

EXTENSIONS

Entry revised by N. J. A. Sloane, Nov 30 2011, to incorporate corrections provided by Reinhard Zumkeller, who also contributed the alternative version A201377.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 04:59 EST 2022. Contains 350374 sequences. (Running on oeis4.)