login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000465 Number of bipartite partitions of n white objects and 4 black ones.
(Formerly M3821 N1565)
5
5, 12, 29, 57, 109, 189, 323, 522, 831, 1279, 1941, 2876, 4215, 6066, 8644, 12151, 16933, 23336, 31921, 43264, 58250, 77825, 103362, 136371, 178975, 233532, 303268, 391831, 504069, 645520, 823419, 1046067, 1324136, 1669950, 2099104, 2629685, 3284325, 4089300 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Number of ways to factor p^n*q^4 where p and q are distinct primes.

a(n) = if n <= 4 then A054225(4,n) else A054225(n,4). - Reinhard Zumkeller, Nov 30 2011

REFERENCES

M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..5000

F. C. Auluck, On partitions of bipartite numbers, Proc. Cambridge Philos. Soc. 49, (1953). 72-83.

F. C. Auluck, On partitions of bipartite numbers, annotated scan of a few pages.

M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956 (Annotated scanned pages from, plus a review)

FORMULA

a(n) ~ sqrt(3) * n * exp(Pi*sqrt(2*n/3)) / (8*Pi^4). - Vaclav Kotesovec, Feb 01 2016

MATHEMATICA

max = 40; col = 4; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)

nmax = 50; CoefficientList[Series[(5 + 2*x - 3*x^3 - 5*x^4 - x^5 + 3*x^7 + x^8 - x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

CROSSREFS

Column 4 of A054225.

Cf. A005380.

Sequence in context: A002767 A055245 A196410 * A283506 A266471 A069306

Adjacent sequences: A000462 A000463 A000464 * A000466 A000467 A000468

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Christian G. Bower, Jan 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 03:48 EDT 2023. Contains 361577 sequences. (Running on oeis4.)