login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266471
Number of 4 X n binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
1
5, 12, 29, 66, 137, 261, 463, 775, 1237, 1898, 2817, 4064, 5721, 7883, 10659, 14173, 18565, 23992, 30629, 38670, 48329, 59841, 73463, 89475, 108181, 129910, 155017, 183884, 216921, 254567, 297291, 345593, 400005, 461092, 529453, 605722, 690569
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/120)*n^5 + (1/24)*n^4 + (17/24)*n^3 - (25/24)*n^2 + (257/60)*n + 1.
Conjectures from Colin Barker, Jan 10 2019: (Start)
G.f.: x*(5 - 18*x + 32*x^2 - 28*x^3 + 11*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0..0....0..0..0..0....0..1..1..1....0..0..0..0....0..0..1..1
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..1....0..1..0..0
..1..1..1..1....0..0..0..0....1..0..1..1....1..1..0..0....1..0..0..0
..1..1..1..1....1..1..1..1....1..1..0..0....1..1..1..1....1..1..1..1
CROSSREFS
Row 4 of A266470.
Sequence in context: A196410 A000465 A283506 * A069306 A277088 A009412
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 29 2015
STATUS
approved